These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 13860618)

  • 1. Mode of action of chloramphenicol. VII. Growth and multiplication of Escherichia coli in the presence of chloramphenicol.
    ALLISON JL; HARTMAN RE; HARTMAN RS; WOLFE AD; CIAK J; HAHN FE
    J Bacteriol; 1962 Mar; 83(3):609-15. PubMed ID: 13860618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of loss of vibility of Escherichia coli exposed to streptomycin.
    HURWITZ C; ROSANO CL; LANDAU JV
    J Bacteriol; 1962 Jun; 83(6):1210-6. PubMed ID: 14450178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of a chloramphenicol-insensitive phase of streptomycin action.
    PLOTZ PH; DAVIS BD
    J Bacteriol; 1962 Apr; 83(4):802-5. PubMed ID: 14038403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloramphenicol-sensitive and-insensitive phases of the lethal action of streptomycin.
    HURWITZ C; ROSANO CL
    J Bacteriol; 1962 Jun; 83(6):1202-9. PubMed ID: 14450180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro study of the action of a tetracycline-oleandomycin preparation. Tetracycline, oleandomycin, and chloramphenicol on Staphylococcus, Escherichia coli, and Klebsiella.
    YAZIGI R; VIGOUROUX J; MORENO Y
    Antibiot Annu; 1959-1960; 7():839-42. PubMed ID: 13846497
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on the action of antibiotics on bacterial metabolism. I. Effect of dihydrostreptomycin or chloramphenicol on alpha-ketoglutarate fermentation by Escherichia coli or Pseudomonas fluorescens.
    KATAGIRI H; SUZUKI Y; TOCHIKURA T
    J Antibiot (Tokyo); 1959 Jul; 12():160-8. PubMed ID: 13853315
    [No Abstract]   [Full Text] [Related]  

  • 7. Mechanism of action of nalidixic acid on Escherichia coli. 3. Conditions required for lethality.
    Deitz WH; Cook TM; Goss WA
    J Bacteriol; 1966 Feb; 91(2):768-73. PubMed ID: 5327367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of nucleic acid synthesis by chloramphenicol in synchronized cultures of Escherichia coli.
    DOUDNEY CO
    J Bacteriol; 1960 Jan; 79(1):122-4. PubMed ID: 13817799
    [No Abstract]   [Full Text] [Related]  

  • 9. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acid in chloramphenicol-inhibited cultures of Escherichia coli.
    Midgley JE; Gray WJ
    Biochem J; 1971 Apr; 122(2):149-59. PubMed ID: 4940606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of chloramphenicol resistance in E. coli. I. The drug sensitivity of chloramphenicol-resistant strains of Escherichia coli as determined by the assessment of 50 per cent end points.
    OKAMOTO S
    Jpn J Med Sci Biol; 1959 Jun; 12():109-17. PubMed ID: 14428523
    [No Abstract]   [Full Text] [Related]  

  • 11. A rapid emergence of chloramphenicol resistance by Escherichia coli in the presence of p-aminosalicylate (PAS).
    TSUKAMURA M
    J Antibiot (Tokyo); 1962 Jan; 15():44-5. PubMed ID: 14039841
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanism of chloramphenicol resistance in E. coli. II. Sensitivity alteration to various drugs of chloramphenicol resistant E. coli converted to protoplast.
    HIROKAWA H; ABE M; MIZUNO D
    Jpn J Med Sci Biol; 1959 Jun; 12():119-24. PubMed ID: 14401951
    [No Abstract]   [Full Text] [Related]  

  • 13. Bactericidal action of an antibiotic produced by Myxococcus xanthus.
    Rosenberg E; Vaks B; Zuckerberg A
    Antimicrob Agents Chemother; 1973 Nov; 4(5):507-13. PubMed ID: 4208901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mechanism of action of levomycetin (chloramphenicol). IV. Effect of levomycetin on pyroracemic acid metabolism in colon and Flexner's bacilli and its relation to the degree of culture medium aeration].
    KOROTIAEV AI
    Mikrobiologiia; 1959; 28():851-7. PubMed ID: 14411122
    [No Abstract]   [Full Text] [Related]  

  • 15. Residual thymidine incorporation in the presence of chloramphenicol in synchronous cultures of Escherichia coli B-r.
    Helmstetter CE
    J Bacteriol; 1974 Oct; 120(1):565-7. PubMed ID: 4607850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of protein synthesis in the survival of carbon-starved Escherichia coli K-12.
    Reeve CA; Amy PS; Matin A
    J Bacteriol; 1984 Dec; 160(3):1041-6. PubMed ID: 6389505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Studies on the drug resistance of enteric bacteria. 12. Experimental isolation of the transmissible chloramphenicol-resistant factor].
    HARADA K; KAMEDA M; SUZUKI M; HASHIMOTO H; EGAWA R; MITSUHASHI S
    Nihon Saikingaku Zasshi; 1961 Oct; 16():894-7. PubMed ID: 13904519
    [No Abstract]   [Full Text] [Related]  

  • 18. Mechanism of chloramphenicol resistance in E. coli. III. The total amino-acid composition of chloramphenicol resistant E. coli and electrophoretical pattern of its beta-galactosidase.
    OKAMOTO S; OHTAKI K; MIZUNO D
    Jpn J Med Sci Biol; 1959 Jun; 12():125-31. PubMed ID: 14428522
    [No Abstract]   [Full Text] [Related]  

  • 19. Accumulation of label from C14-streptomycin by Escherichia coli.
    HURWITZ C; ROSANO CL
    J Bacteriol; 1962 Jun; 83(6):1193-201. PubMed ID: 14450179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of chloramphenicol on the survival of Escherichia coli irradiated with ultraviolet light.
    OKAGAKI H
    J Bacteriol; 1960 Feb; 79(2):277-91. PubMed ID: 14428519
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.