These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 13860621)

  • 1. Studies on the metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. I. Incorporation of isovalerate into leucine.
    ALLISON MJ; BRYANT MP; DOETSCH RN
    J Bacteriol; 1962 Mar; 83(3):523-32. PubMed ID: 13860621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes.
    ALLISON MJ; BRYANT MP; KATZ I; KEENEY M
    J Bacteriol; 1962 May; 83(5):1084-93. PubMed ID: 13860622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of isovalerate to leucine by Ruminococcus flavefaciens.
    ALLISON MJ; BRYANT MP; DOETSCH RN
    Arch Biochem Biophys; 1959 Sep; 84():245-7. PubMed ID: 13792829
    [No Abstract]   [Full Text] [Related]  

  • 4. Importance of the isovalerate carboxylation pathway of leucine biosynthesis in the rumen.
    Allison MJ; Bucklin JA; Robinson IM
    Appl Microbiol; 1966 Sep; 14(5):807-14. PubMed ID: 5970468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth factor requirements of Ruminococcus flavefaciens isolated from the rumen of cattle fed purified diets.
    Slyter LL; Weaver JM
    Appl Microbiol; 1969 May; 17(5):737-41. PubMed ID: 5785957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volatile fatty acid requirements of cellulolytic rumen bacteria.
    Dehority BA; Scott HW; Kowaluk P
    J Bacteriol; 1967 Sep; 94(3):537-43. PubMed ID: 6068143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein origin of the volatile fatty acids isobutyrate and isovalerate in human stool.
    Zarling EJ; Ruchim MA
    J Lab Clin Med; 1987 May; 109(5):566-70. PubMed ID: 3572204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VITAMIN REQUIREMENTS OF SEVERAL CELLULOLYTIC RUMEN BACTERIA.
    SCOTT HW; DEHORITY BA
    J Bacteriol; 1965 May; 89(5):1169-75. PubMed ID: 14292981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative pathways for biosynthesis of leucine and other amino acids in Bacteroides ruminicola and Bacteroides fragilis.
    Allison MJ; Baetz AL; Wiegel J
    Appl Environ Microbiol; 1984 Dec; 48(6):1111-7. PubMed ID: 6440485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.
    Min BR; Pinchak WE; Anderson RC; Hume ME
    J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branched-chain amino acid fermentation by a marine spirochete: strategy for starvation survival.
    Harwood CS; Canale-Parola E
    J Bacteriol; 1981 Oct; 148(1):109-16. PubMed ID: 7287622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrition and carbon metabolism of Methanococcus voltae.
    Whitman WB; Ankwanda E; Wolfe RS
    J Bacteriol; 1982 Mar; 149(3):852-63. PubMed ID: 6801012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volatile fatty acid growth factor for cellulolytic cocci of bovine rumen.
    ALLISON MJ; BRYANT MP; DOETSCH RN
    Science; 1958 Aug; 128(3322):474-5. PubMed ID: 13568813
    [No Abstract]   [Full Text] [Related]  

  • 14. POLYSACCHARIDE STORAGE AND GROWTH EFFICIENCY IN RUMINOCOCCUS ALBUS.
    HUNGATE RE
    J Bacteriol; 1963 Oct; 86(4):848-54. PubMed ID: 14066484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of forage fiber degradation by ruminal microorganisms to branched-chain volatile fatty acids, amino acids, and dipeptides.
    Yang CM
    J Dairy Sci; 2002 May; 85(5):1183-90. PubMed ID: 12086054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulolytic-factor activity of certain short-chain fatty acids for rumen microorganisms in vitro.
    BENTLEY OG; JOHNSON RR; HERSHBERGER TV; CLINE JH; MOXON AL
    J Nutr; 1955 Nov; 57(3):389-400. PubMed ID: 13272080
    [No Abstract]   [Full Text] [Related]  

  • 17. Some nutritional characteristics of predominant culturable ruminal bacteria.
    BRYANT MP; ROBINSON IM
    J Bacteriol; 1962 Oct; 84(4):605-14. PubMed ID: 14016429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DEGRADATION AND UTILIZATION OF ISOLATED HEMICELLULOSE BY PURE CULTURES OF CELLULOLYTIC RUMEN BACTERIA.
    DEHORITY BA
    J Bacteriol; 1965 Jun; 89(6):1515-20. PubMed ID: 14291590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rumen and milk odd- and branched-chain fatty acid proportions are minimally influenced by ruminal volatile fatty acid infusions.
    French EA; Bertics SJ; Armentano LE
    J Dairy Sci; 2012 Apr; 95(4):2015-26. PubMed ID: 22459847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrahydrofolate and other growth requirements of certain strains of Ruminococcus flavefaciens.
    Slyter LL; Weaver JM
    Appl Environ Microbiol; 1977 Feb; 33(2):363-9. PubMed ID: 557955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.