These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 13860621)

  • 21. Some nutritional characteristics of predominant culturable ruminal bacteria.
    BRYANT MP; ROBINSON IM
    J Bacteriol; 1962 Oct; 84(4):605-14. PubMed ID: 14016429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DEGRADATION AND UTILIZATION OF ISOLATED HEMICELLULOSE BY PURE CULTURES OF CELLULOLYTIC RUMEN BACTERIA.
    DEHORITY BA
    J Bacteriol; 1965 Jun; 89(6):1515-20. PubMed ID: 14291590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rumen and milk odd- and branched-chain fatty acid proportions are minimally influenced by ruminal volatile fatty acid infusions.
    French EA; Bertics SJ; Armentano LE
    J Dairy Sci; 2012 Apr; 95(4):2015-26. PubMed ID: 22459847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tetrahydrofolate and other growth requirements of certain strains of Ruminococcus flavefaciens.
    Slyter LL; Weaver JM
    Appl Environ Microbiol; 1977 Feb; 33(2):363-9. PubMed ID: 557955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus.
    Beck HC; Hansen AM; Lauritsen FR
    J Appl Microbiol; 2004; 96(5):1185-93. PubMed ID: 15078537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interconversion of valine and leucine by Clostridium sporogenes.
    Monticello DJ; Costilow RN
    J Bacteriol; 1982 Nov; 152(2):946-9. PubMed ID: 7130135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochanin A improves fibre fermentation by cellulolytic bacteria.
    Harlow BE; Flythe MD; Aiken GE
    J Appl Microbiol; 2018 Jan; 124(1):58-66. PubMed ID: 29112792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nutritional alteration of the fatty acid composition of a thermophilic Bacillus species.
    Daron HH
    J Bacteriol; 1973 Dec; 116(3):1096-9. PubMed ID: 4752936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Release of leucine and isoleucine metabolites by perfused skeletal muscle and liver of rat.
    Spydevold O; Hokland B
    Int J Biochem; 1983; 15(8):985-90. PubMed ID: 6617955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Partial characterization of phylogeny, ecology and function of the fibrolytic bacterium Ruminococcus flavefaciens OS14, newly isolated from the rumen of swamp buffalo.
    Boonsaen P; Kinjo M; Sawanon S; Suzuki Y; Koike S; Kobayashi Y
    Anim Sci J; 2018 Feb; 89(2):377-385. PubMed ID: 29044947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase.
    Zhu K; Bayles DO; Xiong A; Jayaswal RK; Wilkinson BJ
    Microbiology (Reading); 2005 Feb; 151(Pt 2):615-623. PubMed ID: 15699210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relative significance of exogenous and de novo synthesized fatty acids in the formation of rumen microbial lipids in vitro.
    Demeyer DI; Henderson C; Prins RA
    Appl Environ Microbiol; 1978 Jan; 35(1):24-31. PubMed ID: 623468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of lactation stage on the odd- and branched-chain milk fatty acids of dairy cattle under grazing and indoor conditions.
    Craninx M; Steen A; Van Laar H; Van Nespen T; Martín-Tereso J; De Baets B; Fievez V
    J Dairy Sci; 2008 Jul; 91(7):2662-77. PubMed ID: 18565925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a signature probe targeting the 16S-23S rRNA internal transcribed spacer of a ruminal Ruminococcus flavefaciens isolate from reindeer.
    Præsteng KE; Mackie RI; Cann IK; Mathiesen SD; Sundset MA
    Benef Microbes; 2011 Mar; 2(1):47-55. PubMed ID: 21831789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Incorporation of isobutyrate and valerate into cellular plasmalogen by Bacteroides succinogenes.
    WEGNER GH; FOSTER EM
    J Bacteriol; 1963 Jan; 85(1):53-61. PubMed ID: 13999496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Incorporation of [(15)N] ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17.
    Atasoglu C; Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 2001 Jun; 67(6):2819-22. PubMed ID: 11375199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Studies on the contents of the rumen in cattle. I. Volatile fatty acids in the contents of the rumen in calves and free amino acids in the contents and in the blood].
    GUTOWSKI B
    Acta Physiol Pol; 1960; 11():105-18. PubMed ID: 13830486
    [No Abstract]   [Full Text] [Related]  

  • 38. Modulation of rumen fermentation and microbial community through increasing dietary cation-anion difference in Chinese Holstein dairy cows under heat stress conditions.
    Wang Z; Yang DS; Li XY; Yu YN; Yong LY; Zhang PH; He JH; Shen WJ; Wan FC; Feng BL; Tan ZL; Tang SX
    J Appl Microbiol; 2021 Mar; 130(3):722-735. PubMed ID: 32757409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Properties of acetate kinase isozymes and a branched-chain fatty acid kinase from a spirochete.
    Harwood CS; Canale-Parola E
    J Bacteriol; 1982 Oct; 152(1):246-54. PubMed ID: 6288660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Meta-analysis of postruminal microbial nitrogen flows in dairy cattle. I. Derivation of equations.
    Roman-Garcia Y; White RR; Firkins JL
    J Dairy Sci; 2016 Oct; 99(10):7918-7931. PubMed ID: 27448861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.