These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 13860622)

  • 1. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes.
    ALLISON MJ; BRYANT MP; KATZ I; KEENEY M
    J Bacteriol; 1962 May; 83(5):1084-93. PubMed ID: 13860622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. I. Incorporation of isovalerate into leucine.
    ALLISON MJ; BRYANT MP; DOETSCH RN
    J Bacteriol; 1962 Mar; 83(3):523-32. PubMed ID: 13860621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supplementing branched-chain volatile fatty acids in dual-flow cultures varying in dietary forage and corn oil concentrations. II: Biohydrogenation and incorporation into bacterial lipids.
    Mitchell KE; Kienzle SL; Lee C; Socha MT; Kleinschmit DH; Firkins JL
    J Dairy Sci; 2023 Nov; 106(11):7548-7565. PubMed ID: 37532628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volatile fatty acid requirements of cellulolytic rumen bacteria.
    Dehority BA; Scott HW; Kowaluk P
    J Bacteriol; 1967 Sep; 94(3):537-43. PubMed ID: 6068143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of isobutyrate and valerate into cellular plasmalogen by Bacteroides succinogenes.
    WEGNER GH; FOSTER EM
    J Bacteriol; 1963 Jan; 85(1):53-61. PubMed ID: 13999496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of isovalerate to leucine by Ruminococcus flavefaciens.
    ALLISON MJ; BRYANT MP; DOETSCH RN
    Arch Biochem Biophys; 1959 Sep; 84():245-7. PubMed ID: 13792829
    [No Abstract]   [Full Text] [Related]  

  • 7. Conditions stimulating neutral detergent fiber degradation by dosing branched-chain volatile fatty acids. I: Comparison with branched-chain amino acids and forage source in ruminal batch cultures.
    Roman-Garcia Y; Denton BL; Mitchell KE; Lee C; Socha MT; Firkins JL
    J Dairy Sci; 2021 Jun; 104(6):6739-6755. PubMed ID: 33814156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EFFECT IN THE COW OF INTRARUMINAL INFUSIONS OF VOLATILE FATTY ACIDS AND OF LACTIC ACID ON THE SECRETION OF THE COMPONENT FATTY ACIDS OF THE MILK FAT AND ON THE COMPOSITION OF BLOOD.
    STORRY JE; ROOK JA
    Biochem J; 1965 Jul; 96(1):210-7. PubMed ID: 14343134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth factor requirements of Ruminococcus flavefaciens isolated from the rumen of cattle fed purified diets.
    Slyter LL; Weaver JM
    Appl Microbiol; 1969 May; 17(5):737-41. PubMed ID: 5785957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. POLYSACCHARIDE STORAGE AND GROWTH EFFICIENCY IN RUMINOCOCCUS ALBUS.
    HUNGATE RE
    J Bacteriol; 1963 Oct; 86(4):848-54. PubMed ID: 14066484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary Alfalfa and Calcium Salts of Long-Chain Fatty Acids Alter Protein Utilization, Microbial Populations, and Plasma Fatty Acid Profile in Holstein Freemartin Heifers.
    He Y; Qiu Q; Shao T; Niu W; Xia C; Wang H; Li Q; Gao Z; Yu Z; Su H; Cao B
    J Agric Food Chem; 2017 Dec; 65(50):10859-10867. PubMed ID: 29179547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid growth requirement and influence of lipid supplement on fatty acid and aldehyde composition of Syntrophococcus sucromutans.
    Doré J; Bryant MP
    Appl Environ Microbiol; 1989 Apr; 55(4):927-33. PubMed ID: 2729991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. THE COMPOSITION AND BIOSYNTHESIS OF MILK LIPIDS.
    GARTON GA
    J Lipid Res; 1963 Jul; 4():237-54. PubMed ID: 14168161
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of lipid supplementation on milk odd- and branched-chain fatty acids in dairy cows.
    Baumann E; Chouinard PY; Lebeuf Y; Rico DE; Gervais R
    J Dairy Sci; 2016 Aug; 99(8):6311-6323. PubMed ID: 27236757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of fatty acid oxidation products (green odor) on rumen bacterial populations and lipid metabolism in vitro.
    Lee MR; Huws SA; Scollan ND; Dewhurst RJ
    J Dairy Sci; 2007 Aug; 90(8):3874-82. PubMed ID: 17638998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of the isovalerate carboxylation pathway of leucine biosynthesis in the rumen.
    Allison MJ; Bucklin JA; Robinson IM
    Appl Microbiol; 1966 Sep; 14(5):807-14. PubMed ID: 5970468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus.
    Beck HC; Hansen AM; Lauritsen FR
    J Appl Microbiol; 2004; 96(5):1185-93. PubMed ID: 15078537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutritional alteration of the fatty acid composition of a thermophilic Bacillus species.
    Daron HH
    J Bacteriol; 1973 Dec; 116(3):1096-9. PubMed ID: 4752936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism.
    Roze LV; Chanda A; Laivenieks M; Beaudry RM; Artymovich KA; Koptina AV; Awad DW; Valeeva D; Jones AD; Linz JE
    BMC Biochem; 2010 Aug; 11():33. PubMed ID: 20735852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rumen and milk odd- and branched-chain fatty acid proportions are minimally influenced by ruminal volatile fatty acid infusions.
    French EA; Bertics SJ; Armentano LE
    J Dairy Sci; 2012 Apr; 95(4):2015-26. PubMed ID: 22459847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.