BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 1386211)

  • 1. Comparative acid tolerances and inhibitor sensitivities of isolated F-ATPases of oral lactic acid bacteria.
    Sturr MG; Marquis RE
    Appl Environ Microbiol; 1992 Jul; 58(7):2287-91. PubMed ID: 1386211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluoride inhibition of proton-translocating ATPases of oral bacteria.
    Sutton SV; Bender GR; Marquis RE
    Infect Immun; 1987 Nov; 55(11):2597-603. PubMed ID: 2889674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane-associated and solubilized ATPases of Streptococcus mutans and Streptococcus sanguis.
    Sutton SV; Marquis RE
    J Dent Res; 1987 Jun; 66(6):1095-8. PubMed ID: 2887601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci.
    Bender GR; Sutton SV; Marquis RE
    Infect Immun; 1986 Aug; 53(2):331-8. PubMed ID: 3015800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of proton-translocating ATPases of Streptococcus mutans and Lactobacillus casei by fluoride and aluminum.
    Sturr MG; Marquis RE
    Arch Microbiol; 1990; 155(1):22-7. PubMed ID: 2150306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and biochemical characterization of the F-ATPase operon from Streptococcus sanguis 10904.
    Kuhnert WL; Quivey RG
    J Bacteriol; 2003 Mar; 185(5):1525-33. PubMed ID: 12591869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diminished acid tolerance of plaque bacteria caused by fluoride.
    Marquis RE
    J Dent Res; 1990 Feb; 69 Spec No():672-5; discussion 682-3. PubMed ID: 2138181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactate dehydrogenase from Streptococcus mutans: purification, characterization, and crossed antigenicity with lactate dehydrogenases from Lactobacillus casei, Actinomyces viscosus, and Streptococcus sanguis.
    Sommer P; Klein JP; Schöller M; Frank RM
    Infect Immun; 1985 Feb; 47(2):489-95. PubMed ID: 3917978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of lowering the pH on the composition and metabolism of a community of nine oral bacteria grown in a chemostat.
    McDermid AS; McKee AS; Ellwood DC; Marsh PD
    J Gen Microbiol; 1986 May; 132(5):1205-14. PubMed ID: 3095488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of acidification on growth and glycolysis of Streptococcus sanguis and Streptococcus mutans.
    Takahashi N; Horiuchi M; Yamada T
    Oral Microbiol Immunol; 1997 Apr; 12(2):72-6. PubMed ID: 9227129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of organic acid anions on growth, glycolysis, and intracellular pH of oral streptococci.
    Dashper SG; Reynolds EC
    J Dent Res; 2000 Jan; 79(1):90-6. PubMed ID: 10690666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic killing of oral streptococci by reduced, transition metal cations.
    Dunning JC; Ma Y; Marquis RE
    Appl Environ Microbiol; 1998 Jan; 64(1):27-33. PubMed ID: 9435058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interrelationships between lactobacilli and streptococci in plaque formation on a tooth in an artificial mouth.
    Russell C; Ahmed FI
    J Appl Bacteriol; 1978 Dec; 45(3):373-82. PubMed ID: 32164
    [No Abstract]   [Full Text] [Related]  

  • 14. Biochemical change exhibited by oral streptococci resulting from laboratory subculturing.
    Cvitkovitch DG; Hamilton IR
    Oral Microbiol Immunol; 1994 Aug; 9(4):209-17. PubMed ID: 7478760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triclosan inhibition of membrane enzymes and glycolysis of Streptococcus mutans in suspensions and biofilms.
    Phan TN; Marquis RE
    Can J Microbiol; 2006 Oct; 52(10):977-83. PubMed ID: 17110966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and reconstitution into proteoliposomes of the F1F0 ATP synthase from the obligately anaerobic gram-positive bacterium Clostridium thermoautotrophicum.
    Das A; Ivey DM; Ljungdahl LG
    J Bacteriol; 1997 Mar; 179(5):1714-20. PubMed ID: 9045833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of three different infant dentifrices on biofilms and oral microorganisms.
    Modesto A; Lima KC; de Uzeda M
    J Clin Pediatr Dent; 2000; 24(3):237-43. PubMed ID: 11314149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance.
    Casiano-Colón A; Marquis RE
    Appl Environ Microbiol; 1988 Jun; 54(6):1318-24. PubMed ID: 2843090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an enzyme of the F1F0 type.
    Laubinger W; Dimroth P
    Eur J Biochem; 1987 Oct; 168(2):475-80. PubMed ID: 2889596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of F1F0-ATPase in the growth of streptococcus mutans GS5.
    Suzuki T; Tagami J; Hanada N
    J Appl Microbiol; 2000 Apr; 88(4):555-62. PubMed ID: 10792513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.