BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 1386388)

  • 1. Nerve growth factor and choline acetyltransferase activity levels in the rat brain following experimental impairment of cerebral glucose and energy metabolism.
    Hellweg R; Nitsch R; Hock C; Jaksch M; Hoyer S
    J Neurosci Res; 1992 Mar; 31(3):479-86. PubMed ID: 1386388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trophic factors during normal brain aging and after functional damage.
    Hellweg R
    J Neural Transm Suppl; 1994; 44():209-17. PubMed ID: 7897392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of developing cholinergic basal forebrain neurons following excitotoxic lesions of the hippocampus: rescue by neurotrophins.
    Burke MA; Mobley WC; Cho J; Wiegand SJ; Lindsay RM; Mufson EJ; Kordower JH
    Exp Neurol; 1994 Dec; 130(2):178-95. PubMed ID: 7867749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of cholinergic pedunculopontine neurons in vitro: comparison with cholinergic septal cells and response to nerve growth factor, ciliary neuronotrophic factor, and retinoic acid.
    Knusel B; Hefti F
    J Neurosci Res; 1988; 21(2-4):365-75. PubMed ID: 3216429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nerve growth factor induces a dose-dependent and long-lasting increase of choline acetyltransferase activity in the septal area and hippocampus of uninjured rats.
    Vantini G; Fusco M; Schiavo N; Gradkowska M; Zaremba M; Leon A; Oderfeld-Nowak B
    Acta Neurobiol Exp (Wars); 1990; 50(4-5):323-31. PubMed ID: 2130652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential distribution of exogenous BDNF, NGF, and NT-3 in the brain corresponds to the relative abundance and distribution of high-affinity and low-affinity neurotrophin receptors.
    Anderson KD; Alderson RF; Altar CA; DiStefano PS; Corcoran TL; Lindsay RM; Wiegand SJ
    J Comp Neurol; 1995 Jun; 357(2):296-317. PubMed ID: 7665731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats.
    Pathan AR; Viswanad B; Sonkusare SK; Ramarao P
    Life Sci; 2006 Nov; 79(23):2209-16. PubMed ID: 16904700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nerve growth factor and the monosialoganglioside GM1: analogous and different in vivo effects on biochemical, morphological, and behavioral parameters of adult cortically lesioned rats.
    Garofalo L; Cuello AC
    Exp Neurol; 1994 Feb; 125(2):195-217. PubMed ID: 8313938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of donepezil and lercanidipine on memory impairment induced by intracerebroventricular streptozotocin in rats.
    Sonkusare S; Srinivasan K; Kaul C; Ramarao P
    Life Sci; 2005 May; 77(1):1-14. PubMed ID: 15848214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabetic neuropathy.
    Hellweg R; Hartung HD
    J Neurosci Res; 1990 Jun; 26(2):258-67. PubMed ID: 2142224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nerve growth factor receptor and choline acetyltransferase colocalization in neurons within the rat forebrain: response to fimbria-fornix transection.
    Batchelor PE; Armstrong DM; Blaker SN; Gage FH
    J Comp Neurol; 1989 Jun; 284(2):187-204. PubMed ID: 2546981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selenium prevents cognitive decline and oxidative damage in rat model of streptozotocin-induced experimental dementia of Alzheimer's type.
    Ishrat T; Parveen K; Khan MM; Khuwaja G; Khan MB; Yousuf S; Ahmad A; Shrivastav P; Islam F
    Brain Res; 2009 Jul; 1281():117-27. PubMed ID: 19374888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of nerve growth factor's effects on development of septum, striatum, and nucleus basalis cholinergic neurons in vitro.
    Hartikka J; Hefti F
    J Neurosci Res; 1988; 21(2-4):352-64. PubMed ID: 3216428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nerve growth factor mRNA-containing cells are distributed within regions of cholinergic neurons in the rat basal forebrain.
    Lauterborn JC; Isackson PJ; Gall CM
    J Comp Neurol; 1991 Apr; 306(3):439-46. PubMed ID: 1865003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does senile impairment of cholinergic system in rats concern only disturbances in cholinergic phenotype or the progressive degeneration of neuronal cell bodies?
    Niewiadomska G; Wyrzykowska J; Chechłacz M
    Acta Biochim Pol; 2000; 47(2):313-30. PubMed ID: 11051196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly selective effects of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 on intact and injured basal forebrain magnocellular neurons.
    Koliatsos VE; Price DL; Gouras GK; Cayouette MH; Burton LE; Winslow JW
    J Comp Neurol; 1994 May; 343(2):247-62. PubMed ID: 8027442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoamine-activated alpha 2-macroglobulin inhibits choline acetyltransferase of embryonic basal forebrain neurons and reversal of the inhibition by NGF and BDNF but not NT-3.
    Liebl DJ; Koo PH
    J Neurosci Res; 1994 Jul; 38(4):407-14. PubMed ID: 7523691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraparenchymal nerve growth factor improves behavioral deficits while minimizing the adverse effects of intracerebroventricular delivery.
    Pizzo DP; Thal LJ
    Neuroscience; 2004; 124(4):743-55. PubMed ID: 15026115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological characterization of nerve growth factor and/or monosialoganglioside GM1 effects on cholinergic markers in the adult lesioned brain.
    Garofalo L; Cuello AC
    J Pharmacol Exp Ther; 1995 Feb; 272(2):527-45. PubMed ID: 7853166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent effects of haloperidol and ziprasidone on nerve growth factor, cholinergic neurons, and spatial learning in rats.
    Terry AV; Parikh V; Gearhart DA; Pillai A; Hohnadel E; Warner S; Nasrallah HA; Mahadik SP
    J Pharmacol Exp Ther; 2006 Aug; 318(2):709-24. PubMed ID: 16702442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.