These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 13867198)

  • 1. [On the biosynthesis of dipicolinic acid. A contribution to the biology of spore formation].
    BENGER H
    Z Hyg Infektionskr; 1962; 148():318-44. PubMed ID: 13867198
    [No Abstract]   [Full Text] [Related]  

  • 2. Germination properties of spores with low dipicolinic acid content.
    KEYNAN A; MURRELL WG; HALVORSON HO
    J Bacteriol; 1962 Feb; 83(2):395-9. PubMed ID: 14455468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the biosynthesis of dipicolinic acid in spores of Bacillus cereus var. mycoides.
    PERRY JJ; FOSTER JW
    J Bacteriol; 1955 Mar; 69(3):337-46. PubMed ID: 14367284
    [No Abstract]   [Full Text] [Related]  

  • 4. POSSIBLE INVOLVEMENT OF SPORANGIAL CYTOPLASM AS A BIOSYNTHETIC SITE IN DIPICOLINIC ACID FORMATION BY BACILLUS SUBTILIS.
    KONDO M; TAKEDA Y; YONEDA M
    Biken J; 1964 Dec; 7():153-6. PubMed ID: 14308864
    [No Abstract]   [Full Text] [Related]  

  • 5. Levels of Ca2+-dipicolinic acid in individual bacillus spores determined using microfluidic Raman tweezers.
    Huang SS; Chen D; Pelczar PL; Vepachedu VR; Setlow P; Li YQ
    J Bacteriol; 2007 Jul; 189(13):4681-7. PubMed ID: 17468248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release of dipicolinic acid from ungerminated Clostridium spores.
    ROBERTS TL; WYNNE ES
    J Bacteriol; 1962 May; 83(5):1161-2. PubMed ID: 14492795
    [No Abstract]   [Full Text] [Related]  

  • 7. Isolation of dipicolinic acid (pyridine-2:6-dicarboxylic acid) from spores of Bacillus megatherium.
    POWELL JF
    Biochem J; 1953 May; 54(2):210-1. PubMed ID: 13058860
    [No Abstract]   [Full Text] [Related]  

  • 8. Release of dipicolinic acid and calcium and activation of Bacillus stearothermophilus spores as a function of time, temperature and pH.
    Brown MR; Melling J
    J Pharm Pharmacol; 1973 Jun; 25(6):478-83. PubMed ID: 4146587
    [No Abstract]   [Full Text] [Related]  

  • 9. Relation of dipicolinic acid content of anaerobic bacterial endospores to their heat resistance.
    BYRNE AF; BURTON TH; KOCH RB
    J Bacteriol; 1960 Jul; 80(1):139-40. PubMed ID: 13806633
    [No Abstract]   [Full Text] [Related]  

  • 10. Fluoride movement into and out of Bacillus spores and growing cells and effects of fluoride accumulation on spore properties.
    Dong W; Setlow P
    J Appl Microbiol; 2019 Feb; 126(2):503-515. PubMed ID: 30430725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Studies on the site of biosynthesis dipicolinic acid in bacterial spore-formers. 1. Its intracellular distribution during sporulation].
    Kawasaki C; Kondo M; Nishihara T
    Nihon Saikingaku Zasshi; 1967 Aug; 22(8):463-7. PubMed ID: 4966559
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanism of dipicolinic acid stimulation of the soluble reduced diphosphopyridine nucleotide oxidase of spores.
    DOI RH; HALVORSON H
    J Bacteriol; 1961 Apr; 81(4):642-8. PubMed ID: 13723485
    [No Abstract]   [Full Text] [Related]  

  • 13. Release of dipicolinic acid (DPA) from spores of Bacillus megaterium, B. stearothermophilus and B. anthracis in presence of bile acids.
    Gupta KG; Malik M; Bhalla VK
    Zentralbl Bakteriol Orig A; 1974 Feb; 226(1):114-8. PubMed ID: 4152347
    [No Abstract]   [Full Text] [Related]  

  • 14. Release of the dipicolinic acid (DPA) from spores of Bacillus stearothermophilus, B. megaterium and B. anthracis in presence of dyes.
    Gupta KG; Malik M; Bhalla VK
    Zentralbl Bakteriol Orig A; 1974 Feb; 226(2):272-7. PubMed ID: 4151214
    [No Abstract]   [Full Text] [Related]  

  • 15. [Studies on the mechanism of biosynthesis and accumulation of dipicolinic acid in spore-forming bacteria. I. Physical and chemical properties of an active fraction catalyzing synthesis of dipicolinic acid from the diketopimelate-NH3 complex].
    Kawasaki C; Sakurai J; Kondo M
    Nihon Saikingaku Zasshi; 1968 Nov; 23(11):772-6. PubMed ID: 4975434
    [No Abstract]   [Full Text] [Related]  

  • 16. Isolation, characterization & metabolic activities of a Bacillus sp. metabolizing alpha-picolinate.
    Shukla OP
    Indian J Exp Biol; 1975 Jan; 13(1):80-2. PubMed ID: 1158408
    [No Abstract]   [Full Text] [Related]  

  • 17. Single-spore elemental analyses indicate that dipicolinic acid-deficient Bacillus subtilis spores fail to accumulate calcium.
    Hintze PE; Nicholson WL
    Arch Microbiol; 2010 Jun; 192(6):493-7. PubMed ID: 20396869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CHANGES IN THERMORESISTANCE OF CLOSTRIDIUM ROSEUM AS RELATED TO THE INTRACELLULAR CONTENT OF CALCIUM AND DIPICOLINIC ACID.
    WOOLEY BC; COLLIER RE
    Can J Microbiol; 1965 Apr; 11():279-85. PubMed ID: 14323039
    [No Abstract]   [Full Text] [Related]  

  • 19. [Biosynthesis and accumulation of dipicolinic acid in spore-forming bacteria. 2. Isolation of an active compound catalyzing the synthesis of dipicolinic acid from the diketopimelate-NH3 complex].
    Sakurai J; Miki J; Konishi T; Kondo M
    Nihon Saikingaku Zasshi; 1972 Nov; 27(6):791-4. PubMed ID: 4199419
    [No Abstract]   [Full Text] [Related]  

  • 20. Physiological responses of Bacillus amyloliquefaciens spores to high pressure.
    Ahn J; Balasubramaniam VM
    J Microbiol Biotechnol; 2007 Mar; 17(3):524-9. PubMed ID: 18050959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.