These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 13867976)

  • 1. Some formal approaches to the analysis of kinetic data in terms of linear compartmental systems.
    BERMAN M; WEISS MF; SHAHN E
    Biophys J; 1962 May; 2(3):289-316. PubMed ID: 13867976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The routine fitting of kinetic data to models: a mathematical formalism for digital computers.
    BERMAN M; SHAHN E; WEISS MF
    Biophys J; 1962 May; 2(3):275-87. PubMed ID: 13867975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method to estimate parameters of linear compartmental models using artificial neural networks.
    Gambhir SS; Keppenne CL; Banerjee PK; Phelps ME
    Phys Med Biol; 1998 Jun; 43(6):1659-78. PubMed ID: 9651032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Macintosh BASIC program for fitting linear additive models to data by weighted least squares methods, with automatic elimination of redundant parameters from the model.
    Tyson H
    Comput Methods Programs Biomed; 1993 Apr; 39(3-4):311-22. PubMed ID: 8334884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonsteady-state three compartment tracer kinetics. I. Theory.
    Schwartz TL; Snell FM
    Biophys J; 1968 Jul; 8(7):805-17. PubMed ID: 5699807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of molecular parameters by fitting sedimentation data to finite-element solutions of the Lamm equation.
    Demeler B; Saber H
    Biophys J; 1998 Jan; 74(1):444-54. PubMed ID: 9449345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vastly accelerated linear least-squares fitting with numerical optimization for dual-input delay-compensated quantitative liver perfusion mapping.
    Jafari R; Chhabra S; Prince MR; Wang Y; Spincemaille P
    Magn Reson Med; 2018 Apr; 79(4):2415-2421. PubMed ID: 28833534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear least squares compartmental-model-independent parameter identification in PET.
    Thie JA; Smith GT; Hubner KF
    IEEE Trans Med Imaging; 1997 Feb; 16(1):11-6. PubMed ID: 9050404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of Bayesian analysis of compartmental kinetic models in medical imaging.
    Sitek A; Li Q; El Fakhri G; Alpert NM
    Phys Med; 2016 Oct; 32(10):1252-1258. PubMed ID: 27692754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition.
    Vlad MO; Ross J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061908. PubMed ID: 12513319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mathematical modelling in medicine and biology. Theoretical basis and fundamentals].
    Campollo Rivas O
    Rev Invest Clin; 1994; 46(4):307-21. PubMed ID: 7973158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. THE NUMERICAL SOLUTION OF THE TIME-DEPENDENT NERNST-PLANCK EQUATIONS.
    COHEN H; COOLEY JW
    Biophys J; 1965 Mar; 5(2):145-62. PubMed ID: 14268950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course equations of the amount of substance in a linear compartmental system and their computerized derivation.
    García-Meseguer MJ; Vidal de Labra JA; García-Cánovas F; Havsteen BH; García-Moreno M; Varón R
    Biosystems; 2001 Mar; 59(3):197-220. PubMed ID: 11311468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of kinetics using a hybrid maximum-entropy/nonlinear-least-squares method: application to protein folding.
    Steinbach PJ; Ionescu R; Matthews CR
    Biophys J; 2002 Apr; 82(4):2244-55. PubMed ID: 11916879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General linear compartment model with zero input: II. The computerized derivation of the kinetic equations.
    Varón R; García-Meseguer MJ; Havsteen B
    Biosystems; 1995; 36(2):135-44. PubMed ID: 8573694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic modeling and fitting software for interconnected reaction schemes: VisKin.
    Zhang X; Andrews JN; Pedersen SE
    Anal Biochem; 2007 Feb; 361(2):153-61. PubMed ID: 17207764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fitting linear compartmental models by a matrix diagonalization method.
    Russell CD
    Nucl Med Commun; 2001 Aug; 22(8):903-8. PubMed ID: 11473210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations.
    Barnard AC; Duck IM; Lynn MS
    Biophys J; 1967 Sep; 7(5):443-62. PubMed ID: 6048873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear scaling density fitting.
    Sodt A; Subotnik JE; Head-Gordon M
    J Chem Phys; 2006 Nov; 125(19):194109. PubMed ID: 17129091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.