These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 1387016)
1. Molecular engineering of the antitumor immune response. Pardoll DM; Golumbek P; Levitsky H; Jaffee L Bone Marrow Transplant; 1992; 9 Suppl 1():182-6. PubMed ID: 1387016 [No Abstract] [Full Text] [Related]
2. Perilymphatic injections of cytokines: a new tool in active cancer immunotherapy. Experimental rationale and clinical findings. Forni G; Giovarelli M; Jemma C; Bosco MC; Caretto P; Modesti A; Santoni A; Forni M; Cortesina G; de Stefani A Ann Ist Super Sanita; 1990; 26(3-4):397-409. PubMed ID: 2151108 [TBL] [Abstract][Full Text] [Related]
3. The tumor-cytokine transplantation assay and the antitumor activity of interleukin-4. Tepper RI Bone Marrow Transplant; 1992; 9 Suppl 1():177-81. PubMed ID: 1504664 [No Abstract] [Full Text] [Related]
4. Local IL-4 delivery enhances immune reactivity to murine tumors: gene therapy in combination with IL-2. Pippin BA; Rosenstein M; Jacob WF; Chiang Y; Lotze MT Cancer Gene Ther; 1994 Mar; 1(1):35-42. PubMed ID: 7621236 [TBL] [Abstract][Full Text] [Related]
5. Genetically engineered fibroblasts with antigen-presenting capability: efficient induction of an antigen-specific cytotoxic T-lymphocyte response and protection against tumor development in vivo. Kim TS; Chung SW; Kim SH; Kang BY; Hwang SY; Lee JW Cancer Gene Ther; 2000 Jun; 7(6):861-9. PubMed ID: 10880016 [TBL] [Abstract][Full Text] [Related]
6. Immuno-viral therapy of brain tumors by combination of viral therapy with cancer vaccination using a replication-conditional HSV. Toda M; Iizuka Y; Kawase T; Uyemura K; Kawakami Y Cancer Gene Ther; 2002 Apr; 9(4):356-64. PubMed ID: 11960286 [TBL] [Abstract][Full Text] [Related]
7. The boosting effect of co-transduction with cytokine genes on cancer vaccine therapy using genetically modified dendritic cells expressing tumor-associated antigen. Ojima T; Iwahashi M; Nakamura M; Matsuda K; Naka T; Nakamori M; Ueda K; Ishida K; Yamaue H Int J Oncol; 2006 Apr; 28(4):947-53. PubMed ID: 16525645 [TBL] [Abstract][Full Text] [Related]
8. A retrogen strategy for presentation of an intracellular tumor antigen as an exogenous antigen by dendritic cells induces potent antitumor T helper and CTL responses. You Z; Hester J; Rollins L; Spagnoli GC; van der Bruggen P; Chen SY Cancer Res; 2001 Jan; 61(1):197-205. PubMed ID: 11196161 [TBL] [Abstract][Full Text] [Related]
9. Macrophage T lymphocyte interactions in the anti-tumor immune response: a mathematical model. De Boer RJ; Hogeweg P; Dullens HF; De Weger RA; Den Otter W J Immunol; 1985 Apr; 134(4):2748-58. PubMed ID: 3156189 [TBL] [Abstract][Full Text] [Related]
10. Tumor-reactive T helper lymphocytes recognize a promiscuous MAGE-A3 epitope presented by various major histocompatibility complex class II alleles. Kobayashi H; Song Y; Hoon DS; Appella E; Celis E Cancer Res; 2001 Jun; 61(12):4773-8. PubMed ID: 11406551 [TBL] [Abstract][Full Text] [Related]
11. Antitumor effects of interleukin-12 (IL-12): applications for the immunotherapy and gene therapy of cancer. Tahara H; Lotze MT Gene Ther; 1995 Mar; 2(2):96-106. PubMed ID: 7719935 [TBL] [Abstract][Full Text] [Related]
12. Administration of subtumor regression dosage of TNF-alpha to mice with pre-existing parental tumors augments the vaccination effect of TNF gene-modified tumor through the induction of MHC class I molecule. Lu Y; Yamauchi N; Koshita Y; Fujiwara H; Sato Y; Fujii S; Takahashi M; Sato T; Kato J; Yamagishi H; Niitsu Y Gene Ther; 2001 Apr; 8(7):499-507. PubMed ID: 11319616 [TBL] [Abstract][Full Text] [Related]
13. Gene therapy of cancer. Rosenberg SA Important Adv Oncol; 1992; ():17-38. PubMed ID: 1582673 [No Abstract] [Full Text] [Related]
14. [Tumor-specific immunotherapy: active immunotherapy by augmenting the induction of tumor-specific effector T cells through a T-T cell interaction mechanism]. Kosugi A; Fujiwara H; Hamaoka T Gan To Kagaku Ryoho; 1984 Aug; 11(8):1527-35. PubMed ID: 6236750 [TBL] [Abstract][Full Text] [Related]
15. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Li B; Lalani AS; Harding TC; Luan B; Koprivnikar K; Huan Tu G; Prell R; VanRoey MJ; Simmons AD; Jooss K Clin Cancer Res; 2006 Nov; 12(22):6808-16. PubMed ID: 17121902 [TBL] [Abstract][Full Text] [Related]
16. Combinational immunotherapy for established tumors with engineered tumor vaccines and adenovirus-mediated gene transfer. Xiang J; Chen Y; Moyana T Cancer Gene Ther; 2000 Jul; 7(7):1023-33. PubMed ID: 10917205 [TBL] [Abstract][Full Text] [Related]
17. Antitumor efficacy of wild-type p53-specific CD4(+) T-helper cells. Zwaveling S; Vierboom MP; Ferreira Mota SC; Hendriks JA; Ooms ME; Sutmuller RP; Franken KL; Nijman HW; Ossendorp F; Van Der Burg SH; Offringa R; Melief CJ Cancer Res; 2002 Nov; 62(21):6187-93. PubMed ID: 12414646 [TBL] [Abstract][Full Text] [Related]
18. Tumor cells engineered to express major histocompatibility complex class II molecules induce T helper cell-dependent responses that protect mice from normally lethal doses of unmodified tumor cells. Callahan GN; Leach DR Cancer Detect Prev; 1996; 20(3):199-206. PubMed ID: 8769713 [TBL] [Abstract][Full Text] [Related]
19. Specific antitumor immune response induced by a novel DNA vaccine composed of multiple CTL and T helper cell epitopes of prostate cancer associated antigens. Qin H; Zhou C; Wang D; Ma W; Liang X; Lin C; Zhang Y; Zhang S Immunol Lett; 2005 Jun; 99(1):85-93. PubMed ID: 15894116 [TBL] [Abstract][Full Text] [Related]
20. Requirement for recognition of class II molecules and processed tumor antigen for optimal generation of syngeneic tumor-specific class I-restricted CTL. Kern DE; Klarnet JP; Jensen MC; Greenberg PD J Immunol; 1986 Jun; 136(11):4303-10. PubMed ID: 2422280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]