These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 13871547)

  • 1. Differential incorporation of labeled amino acids in the territories of the sea urchin blastula.
    BOSCO M; MONROY A
    Experientia; 1962 Mar; 18():124-5. PubMed ID: 13871547
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on the cellular basis of morphogenesis of the sea urchin embryo. The formation of the blastula.
    WOLPERT L; GUSTAFSON T
    Exp Cell Res; 1961 Nov; 25():374-82. PubMed ID: 14008118
    [No Abstract]   [Full Text] [Related]  

  • 3. An electron microscope study of the development of the blastula of the sea urchin embryo and its radial polarity.
    WOLPERT L; MERCER EH
    Exp Cell Res; 1963 Apr; 30():280-300. PubMed ID: 14001679
    [No Abstract]   [Full Text] [Related]  

  • 4. An electro microscopic investigation of the mechanisms of adhesion of the cells in a sea urchin blastula and gastrula.
    BALINSKY BI
    Exp Cell Res; 1959 Feb; 16(2):429-33. PubMed ID: 13653007
    [No Abstract]   [Full Text] [Related]  

  • 5. Distribution of protease activity in the blastula and early gastrula of Discoglossus pictus.
    D'AMELIO V; CEAS MP
    Experientia; 1957 Apr; 13(4):152-3. PubMed ID: 13447905
    [No Abstract]   [Full Text] [Related]  

  • 6. Pathways of glucose metabolism in early sea urchin development.
    BACKSTROM S; HULTIN K; HULTIN T
    Exp Cell Res; 1960 Apr; 19():634-6. PubMed ID: 13795606
    [No Abstract]   [Full Text] [Related]  

  • 7. Incorporation of C 14-L-leucine into protein by cell-free systems from sea urchin embryos at different stages of development.
    HULTIN T; BERGSTRAND A
    Dev Biol; 1960 Feb; 2():61-75. PubMed ID: 14403968
    [No Abstract]   [Full Text] [Related]  

  • 8. Release of respiratory control by 2,4-dinitrophenol in different stages of sea urchin development.
    IMMERS J; RUNNSTROM J
    Dev Biol; 1960 Feb; 2():90-104. PubMed ID: 13852759
    [No Abstract]   [Full Text] [Related]  

  • 9. Amino acid incorporation into the proteins of isolated cells and total homogenates of sea urchin embryos.
    GIUDICE G
    Arch Biochem Biophys; 1962 Dec; 99():447-50. PubMed ID: 13948263
    [No Abstract]   [Full Text] [Related]  

  • 10. Interrelation of messenger polyribonucleotides and ribosomes in the sea urchin egg during embryonic development.
    NEMER M
    Biochem Biophys Res Commun; 1962 Aug; 8():511-5. PubMed ID: 14478972
    [No Abstract]   [Full Text] [Related]  

  • 11. Studies of the metabolism of B-vitamins and related compounds in embryonic sea urchin development. II. The niacin group of factors.
    KAVANAU JL; BANHIDI ZG
    Exp Cell Res; 1956 Apr; 10(2):415-23. PubMed ID: 13317908
    [No Abstract]   [Full Text] [Related]  

  • 12. Changes in the amount of nucleic acids and free nucleotides during early embryonic development of sea urchins.
    AGRELL I; PERSSON H
    Nature; 1956 Dec; 178(4547):1398-9. PubMed ID: 13387722
    [No Abstract]   [Full Text] [Related]  

  • 13. Amino acid metabolism in the early development of the sea urchin Paracentrotus lividus.
    KAVANAU JL
    Exp Cell Res; 1954 Nov; 7(2):530-57. PubMed ID: 13220596
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies of the metabolism of B-vitamins and related compounds in embryonic sea urchin development. I. Pantothenic acid and Lactobacillus bulgaricus factor.
    BANHIDI ZG; KAVANAU JL
    Exp Cell Res; 1956 Apr; 10(2):405-14. PubMed ID: 13317907
    [No Abstract]   [Full Text] [Related]  

  • 15. Archenteron cells are responsible for the increase in ribosomal RNA synthesis in sea urchin gastrulae.
    Roccheri MC; di Bernardo MG; Giudice G
    Cell Biol Int Rep; 1979 Dec; 3(9):733-7. PubMed ID: 509544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of C14-glucose for amino acids and protein synthesis by the sea urchin embryo.
    MONROY A; VITTORELLI ML
    J Cell Comp Physiol; 1962 Dec; 60():285-7. PubMed ID: 13936093
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparative study of the localization of incorporated 14C-labeled amino acids and 35SO4 in the sea urchin ovary, egg and embryo.
    IMMERS J
    Exp Cell Res; 1961 Aug; 24():356-78. PubMed ID: 13717604
    [No Abstract]   [Full Text] [Related]  

  • 18. The composition of sea urchin sperm and embryo histones.
    Johnson AW; Wilhelm JA; Ward DN; Hnilica LS
    Biochim Biophys Acta; 1973 Jan; 295(1):140-9. PubMed ID: 4685067
    [No Abstract]   [Full Text] [Related]  

  • 19. Methylation of DNA in developing embryos of the sea urchin Psammechinus miliaris.
    Baur R; Wohlert H; Kröger H
    Hoppe Seylers Z Physiol Chem; 1979 Sep; 360(9):1263-9. PubMed ID: 511116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-stranded regions in DNA isolated from different developmental stages of the sea urchin.
    Case ST; Mongeon RL; Baker RF
    Biochim Biophys Acta; 1974 Apr; 349(1):1-12. PubMed ID: 11400427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.