BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 1387501)

  • 1. Mutations in phosphofructokinases alter the control characteristics of glycolysis in vivo in Saccharomyces cerevisiae.
    Lloyd D; James CJ; Maitra PK
    Yeast; 1992 Apr; 8(4):291-301. PubMed ID: 1387501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycolytic sequence and respiration of Debaryomyces hansenii as compared to Saccharomyces cerevisiae.
    Sánchez NS; Calahorra M; González-Hernández JC; Peña A
    Yeast; 2006 Apr; 23(5):361-74. PubMed ID: 16598688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA; Cortassa S
    Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae.
    Peter Smits H; Hauf J; Müller S; Hobley TJ; Zimmermann FK; Hahn-Hägerdal B; Nielsen J; Olsson L
    Yeast; 2000 Oct; 16(14):1325-34. PubMed ID: 11015729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is the phosphofructokinase-reaction obligatory for glucose fermentation by Saccharomyces cerevisiae?
    Heinisch J; Zimmermann FK
    Yeast; 1985 Dec; 1(2):173-5. PubMed ID: 2975901
    [No Abstract]   [Full Text] [Related]  

  • 7. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions.
    Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M
    FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1.
    Ernandes JR; De Meirsman C; Rolland F; Winderickx J; de Winde J; Brandão RL; Thevelein JM
    Yeast; 1998 Feb; 14(3):255-69. PubMed ID: 9580251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hxk2 deletion and HAP4 overexpression on fermentative capacity in Saccharomyces cerevisiae.
    Schuurmans JM; Rossell SL; van Tuijl A; Bakker BM; Hellingwerf KJ; Teixeira de Mattos MJ
    FEMS Yeast Res; 2008 Mar; 8(2):195-203. PubMed ID: 18179578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphofructokinase mutants of yeast. Biochemistry and genetics.
    Lobo Z; Maitra PK
    J Biol Chem; 1983 Feb; 258(3):1444-9. PubMed ID: 6218165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux.
    Bosch D; Johansson M; Ferndahl C; Franzén CJ; Larsson C; Gustafsson L
    FEMS Yeast Res; 2008 Feb; 8(1):10-25. PubMed ID: 18042231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae.
    Davies SE; Brindle KM
    Biochemistry; 1992 May; 31(19):4729-35. PubMed ID: 1533788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insufficient uracil supply in fully aerobic chemostat cultures of Saccharomyces cerevisiae leads to respiro-fermentative metabolism and double nutrient-limitation.
    Basso TO; Dario MG; Tonso A; Stambuk BU; Gombert AK
    Biotechnol Lett; 2010 Jul; 32(7):973-7. PubMed ID: 20349336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of 6-phosphofructokinase with cytosolic proteins of Saccharomyces cerevisiae.
    Schwock J; Kirchberger J; Edelmann A; Kriegel TM; Kopperschläger G
    Yeast; 2004 Apr; 21(6):483-94. PubMed ID: 15116431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae.
    Boles E; Heinisch J; Zimmermann FK
    Yeast; 1993 Jul; 9(7):761-70. PubMed ID: 8368010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats.
    Mashego MR; Jansen ML; Vinke JL; van Gulik WM; Heijnen JJ
    FEMS Yeast Res; 2005 Feb; 5(4-5):419-30. PubMed ID: 15691747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Ansell R; Rigoulet M; Adler L; Gustafsson L
    Yeast; 1998 Mar; 14(4):347-57. PubMed ID: 9559543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerobic and anaerobic carbohydrate metabolism and egg production of Schistosoma mansoni in vitro.
    Schiller EL; Bueding E; Turner VM; Fisher J
    J Parasitol; 1975 Jun; 61(3):385-89. PubMed ID: 1169294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single point mutation leads to an instability of the hetero-octameric structure of yeast phosphofructokinase.
    Kirchberger J; Edelmann A; Kopperschläger G; Heinisch JJ
    Biochem J; 1999 Jul; 341 ( Pt 1)(Pt 1):15-23. PubMed ID: 10377240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration.
    Lin SJ; Kaeberlein M; Andalis AA; Sturtz LA; Defossez PA; Culotta VC; Fink GR; Guarente L
    Nature; 2002 Jul; 418(6895):344-8. PubMed ID: 12124627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.