These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 13875155)

  • 1. The heterolactic fermentation. III. Position of C-14 in the products of fructose dissimilation by Leuconostoc mesenteroides.
    BUSSE M; KINDEL PK; GIBBS M
    J Biol Chem; 1961 Nov; 236():2850-3. PubMed ID: 13875155
    [No Abstract]   [Full Text] [Related]  

  • 2. The heterolactic fermentation. II. Position of C14 in the products of glucose dissimilation by Leuconostoc mesenteroides.
    GUNSALUS IC; GIBBS M
    J Biol Chem; 1952 Feb; 194(2):871-5. PubMed ID: 14927681
    [No Abstract]   [Full Text] [Related]  

  • 3. The degradation of 2-keto-D-gluconate-C14, D-gluconate-C14, and D-fructose-C14 by Leuconostoc mesenteroides.
    BLAKLEY ER; BLACKWOOD AC
    Can J Microbiol; 1957 Aug; 3(5):741-4. PubMed ID: 13460823
    [No Abstract]   [Full Text] [Related]  

  • 4. Adaptive control of the ethanol-forming system in heterolactic acid bacteria. Effect of growth conditions on alcohol dehydrogenase synthesis in Leuconostoc mesenteroides.
    Ito S; Hashiba H; Eguchi Y
    J Biochem; 1974 Mar; 75(3):577-81. PubMed ID: 4151996
    [No Abstract]   [Full Text] [Related]  

  • 5. Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway.
    Richter H; Hamann I; Unden G
    Arch Microbiol; 2003 Apr; 179(4):227-33. PubMed ID: 12677361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation of glucose-C14 and xylose-C14 by various strains of Leuconostoc mesenteroides.
    BLACKWOOD AC; BLAKLEY ER
    J Bacteriol; 1960 Mar; 79(3):411-6. PubMed ID: 13801206
    [No Abstract]   [Full Text] [Related]  

  • 7. Reduction of D-lactate content in sauerkraut using starter cultures of recombinant Leuconostoc mesenteroides expressing the ldhL gene.
    Jin Q; Li L; Moon JS; Cho SK; Kim YJ; Lee SJ; Han NS
    J Biosci Bioeng; 2016 May; 121(5):479-83. PubMed ID: 26472127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation.
    Jung JY; Lee SH; Lee HJ; Seo HY; Park WS; Jeon CO
    Int J Food Microbiol; 2012 Feb; 153(3):378-87. PubMed ID: 22189023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of temperature and pH on production of two bacteriocins by Leuconostoc mesenteroides subsp. mesenteroides FR52 during batch fermentation.
    Krier F; Revol-Junelles AM; Germain P
    Appl Microbiol Biotechnol; 1998 Sep; 50(3):359-63. PubMed ID: 9802221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genome-scale metabolic network of the aroma bacterium Leuconostoc mesenteroides subsp. cremoris.
    Özcan E; Selvi SS; Nikerel E; Teusink B; Toksoy Öner E; Çakır T
    Appl Microbiol Biotechnol; 2019 Apr; 103(7):3153-3165. PubMed ID: 30712128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Fermentative degradation of 2-14C-mannose with Leuconostoc mesenteroides (author's transl)].
    Ziegler E; Dahmen J
    Arch Microbiol; 1975 Dec; 106(3):267-9. PubMed ID: 1217941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesenterocin 52, a bacteriocin produced by Leuconostoc mesenteroides ssp. mesenteroides FR 52.
    Mathieu F; Suwandhi IS; Rekhif N; Millière JB; Lefebvre G
    J Appl Bacteriol; 1993 Apr; 74(4):372-9. PubMed ID: 8486542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance of phosphoglucose isomerase for the shift between heterolactic and mannitol fermentation of fructose by Oenococcus oeni.
    Richter H; De Graaf AA; Hamann I; Unden G
    Arch Microbiol; 2003 Dec; 180(6):465-70. PubMed ID: 14608457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new process for the production of clinical dextran by mixed-culture fermentation of Lipomyces starkeyi and Leuconostoc mesenteroides.
    Kim D; Day DF
    Enzyme Microb Technol; 1994 Oct; 16(10):844-8. PubMed ID: 7521648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NAD(P)H regeneration is the key for heterolactic fermentation of hexoses in Oenococcus oeni.
    Maicas S; Ferrer S; Pardo I
    Microbiology (Reading); 2002 Jan; 148(Pt 1):325-332. PubMed ID: 11782525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides.
    Marty-Teysset C; Posthuma C; Lolkema JS; Schmitt P; Divies C; Konings WN
    J Bacteriol; 1996 Apr; 178(8):2178-85. PubMed ID: 8636016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of L-malate on glucose fermentation by Leuconostoc mesenteroides].
    Kandler O; Winter J; Stetter KO
    Arch Mikrobiol; 1973 Mar; 90(1):65-75. PubMed ID: 4706775
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of Leuconostoc mesenteroides starter culture on fermentation of cabbage with reduced salt concentrations.
    Johanningsmeier S; McFeeters RF; Fleming HP; Thompson RL
    J Food Sci; 2007 Jun; 72(5):M166-72. PubMed ID: 17995739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diacetyl and acetoin production from the co-metabolism of citrate and xylose by Leuconostoc mesenteroides subsp. mesenteroides.
    Schmitt P; Vasseur C; Phalip V; Huang DQ; Diviès C; Prévost H
    Appl Microbiol Biotechnol; 1997 Jun; 47(6):715-8. PubMed ID: 9237392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mannitol production by Leuconostoc citreum KACC 91348P isolated from Kimchi.
    Otgonbayar GE; Eom HJ; Kim BS; Ko JH; Han NS
    J Microbiol Biotechnol; 2011 Sep; 21(9):968-71. PubMed ID: 21952374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.