These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1387625)

  • 1. [Effect of blood coagulation on the functional activity of transport adenosine triphosphatases in erythrocytes].
    Bezrukova GA; Rubin VI
    Gematol Transfuziol; 1992 Mar; 37(3):31-3. PubMed ID: 1387625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Activation of lipid peroxidation in erythrocytes during blood coagulation in vitro].
    Bezrukova GA; Rubin VI
    Gematol Transfuziol; 1990 Jul; 35(7):8-9. PubMed ID: 2210327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of two ATPases in human erythrocyte membranes.
    Gröschel-Stewart U
    Experientia; 1969 Jun; 25(6):601-2. PubMed ID: 4240598
    [No Abstract]   [Full Text] [Related]  

  • 4. Connection between membrane adenosine triphosphatase activity and potassium transport in erythrocyte ghosts.
    Gárdos G
    Experientia; 1964 Jul; 20(7):387. PubMed ID: 4221684
    [No Abstract]   [Full Text] [Related]  

  • 5. Thiol transport from human red blood cells.
    Kondo T; Dale GL; Beutler E
    Methods Enzymol; 1995; 252():72-82. PubMed ID: 7476376
    [No Abstract]   [Full Text] [Related]  

  • 6. Vectorial aspects of adenosine-triphosphatase activity in erythrocyte membranes.
    Whittam R; Ager ME
    Biochem J; 1964 Nov; 93(2):337-48. PubMed ID: 4220933
    [No Abstract]   [Full Text] [Related]  

  • 7. Ligand-induced conformational changes in the (Mg 2+ + Ca 2+ )-dependent ATPase of red cell membranes.
    Bond GH
    Biochim Biophys Acta; 1972 Nov; 288(2):423-33. PubMed ID: 4263663
    [No Abstract]   [Full Text] [Related]  

  • 8. Rheological analyses of coagulation of blood from different individuals with special reference to procoagulant activity of erythrocytes.
    Kaibara M; Iwata H; Ujiie H; Himeno R; Kaibara M
    Blood Coagul Fibrinolysis; 2005 Jul; 16(5):355-63. PubMed ID: 15970720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some properties of Ca-activiated ATPase in human red cell membranes.
    Vincenzi FF; Schatzmann HJ
    Helv Physiol Pharmacol Acta; 1967; 25(2):CR233-4. PubMed ID: 4231683
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies on red-cell ghost ATPase systems: properties of a (Mg2+ + Ca2+)-dependent ATPase.
    Wins P; Schoffeniels E
    Biochim Biophys Acta; 1966 Jul; 120(3):341-50. PubMed ID: 4226062
    [No Abstract]   [Full Text] [Related]  

  • 11. Structural and enzymic aspects of the hydrolysis of adenosine triphosphate by membranes of kidney cortex and erythrocytes.
    Wheeler KP; Whittam R
    Biochem J; 1964 Nov; 93(2):349-63. PubMed ID: 4220934
    [No Abstract]   [Full Text] [Related]  

  • 12. Membrane ATPase and electrolyte levels in marsupial erythrocytes.
    Baker E; Simmonds WJ
    Biochim Biophys Acta; 1966 Nov; 126(3):492-9. PubMed ID: 4225876
    [No Abstract]   [Full Text] [Related]  

  • 13. The relationship of membrane ATPase activity to ouabain-insensitive sodium transport in human red cells.
    Smith EK; Welt LG
    Can J Physiol Pharmacol; 1973 Sep; 51(9):642-8. PubMed ID: 4270971
    [No Abstract]   [Full Text] [Related]  

  • 14. Oxidative stress and damage to erythrocytes in patients with chronic obstructive pulmonary disease--changes in ATPase and acetylcholinesterase activity.
    Bukowska B; Sicińska P; Pająk A; Koceva-Chyla A; Pietras T; Pszczółkowska A; Górski P; Koter-Michalak M
    Biochem Cell Biol; 2015 Dec; 93(6):574-80. PubMed ID: 26369587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of various sulfur compounds on the transport system enzymes in human erythrocyte membranes.
    Rybczyńska M; Chmiel J
    Pol J Pharmacol Pharm; 1982; 34(1-3):177-82. PubMed ID: 6220265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Adenosine triphosphatase activity of human red blood corpuscles].
    Wins P; Schoffeniels E
    Arch Int Physiol Biochim; 1965 Jan; 73(1):160-1. PubMed ID: 4158405
    [No Abstract]   [Full Text] [Related]  

  • 17. Depressed (Ca++)-transport ATPase in cystic fibrosis erythrocytes.
    Horton CR; Cole WQ
    Biochem Biophys Res Commun; 1970 Aug; 40(3):505-9. PubMed ID: 4250079
    [No Abstract]   [Full Text] [Related]  

  • 18. Increase in ATPase activity in red cell membranes as a function of freezing regimen.
    Takehara I; Rowe AW
    Cryobiology; 1971 Dec; 8(6):559-65. PubMed ID: 4257764
    [No Abstract]   [Full Text] [Related]  

  • 19. Biochemical and physiological properties of isolated platelet membranes.
    Marcus AJ; Bradlow BA; Safier LB; Ullman HL
    Thromb Diath Haemorrh Suppl; 1967; 26():43-52. PubMed ID: 4229031
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of membrane-associated enzymes in regulation of erythrocyte shape and deformability.
    Mohandas N; Shohet SB
    Clin Haematol; 1981 Feb; 10(1):223-37. PubMed ID: 6260407
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.