These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1387646)

  • 1. Experimental determination of velocity profiles and wall shear rate along the rabbit aortoiliac bifurcation: relationship to vessel wall low-density lipoprotein (LDL) metabolism.
    Mandarino WA; Berceli SA; Sheppeck RA; Borovetz HS
    J Biomech; 1992 Sep; 25(9):985-93. PubMed ID: 1387646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamics and low density lipoprotein metabolism. Rates of low density lipoprotein incorporation and degradation along medial and lateral walls of the rabbit aorto-iliac bifurcation.
    Berceli SA; Warty VS; Sheppeck RA; Mandarino WA; Tanksale SK; Borovetz HS
    Arteriosclerosis; 1990; 10(5):686-94. PubMed ID: 2403296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vector analysis of the wall shear rate at the human aortoiliac bifurcation using cine MR velocity mapping.
    Tsuji T; Suzuki J; Shimamoto R; Yamazaki T; Nakajima T; Nagai R; Komatsu S; Ohtomo K; Toyo-Oka T; Omata M
    AJR Am J Roentgenol; 2002 Apr; 178(4):995-9. PubMed ID: 11906890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsatile flow visualization in a model of the human abdominal aorta and aortic bifurcation.
    Pedersen EM; Yoganathan AP; Lefebvre XP
    J Biomech; 1992 Aug; 25(8):935-44. PubMed ID: 1639838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions.
    Pedersen EM; Sung HW; Burlson AC; Yoganathan AP
    J Biomech; 1993 Oct; 26(10):1237-47. PubMed ID: 8253828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of pulsatile frequency on wall shear in a compliant cast of a human aortic bifurcation.
    Kuban BD; Friedman MH
    J Biomech Eng; 1995 May; 117(2):219-23. PubMed ID: 7666659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3,3'-Dioctadecylindocarbocyanine-low-density lipoprotein uptake and flow patterns in the rabbit aorta-iliac bifurcation under three perfusion flow conditions.
    Ding Z; Fan Y; Deng X; Sun A; Kang H
    Exp Biol Med (Maywood); 2010 Sep; 235(9):1062-71. PubMed ID: 20705630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study on the effect of steady axial flow development in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T; Rodgers VG; Frazin LJ; Chandran KB
    J Biomech; 1998 Nov; 31(11):995-1007. PubMed ID: 9880056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of sites with elevated LDL permeability at intercostal, celiac, and iliac branches of the normal rabbit aorta.
    Herrmann RA; Malinauskas RA; Truskey GA
    Arterioscler Thromb; 1994 Feb; 14(2):313-23. PubMed ID: 8305425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computer simulation of the blood flow at the aortic bifurcation with flexible walls.
    Lou Z; Yang WJ
    J Biomech Eng; 1993 Aug; 115(3):306-15. PubMed ID: 8231147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of steady and pulsatile flow in a double branching arterial model.
    Lutz RJ; Hsu L; Menawat A; Zrubek J; Edwards K
    J Biomech; 1983; 16(9):753-66. PubMed ID: 6643546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The shear rate at the wall in a symmetrically branched tube simulating the aortic bifurcation.
    Walburn FJ; Stein PD
    Biorheology; 1982; 19(1/2):307-16. PubMed ID: 6212090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wall shear rate distribution in an abdominal aortic bifurcation model: effects of vessel compliance and phase angle between pressure and flow waveforms.
    Lee CS; Tarbell JM
    J Biomech Eng; 1997 Aug; 119(3):333-42. PubMed ID: 9285347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow and wall shear stress characterization after endovascular aneurysm repair and endovascular aneurysm sealing in an infrarenal aneurysm model.
    Boersen JT; Groot Jebbink E; Versluis M; Slump CH; Ku DN; de Vries JPM; Reijnen MMPJ
    J Vasc Surg; 2017 Dec; 66(6):1844-1853. PubMed ID: 28285931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis.
    Moore JE; Ku DN; Zarins CK; Glagov S
    J Biomech Eng; 1992 Aug; 114(3):391-7. PubMed ID: 1295493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional visualization of velocity profiles in the porcine abdominal aortic trifurcation.
    Pedersen EM; Hjortdal JO; Hjortdal VE; Nygaard H; Hasenkam M; Paulsen PK
    J Vasc Surg; 1992 Jan; 15(1):194-204. PubMed ID: 1530825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches.
    Lee D; Chen JY
    J Biomech; 2002 Aug; 35(8):1115-22. PubMed ID: 12126670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculations of pulsatile flow through a branch: implications for the hemodynamics of atherogenesis.
    Friedman MH; O'Brien V; Ehrlich LW
    Circ Res; 1975 Feb; 36(2):277-85. PubMed ID: 1116238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.
    Zarins CK; Giddens DP; Bharadvaj BK; Sottiurai VS; Mabon RF; Glagov S
    Circ Res; 1983 Oct; 53(4):502-14. PubMed ID: 6627609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wall shear stress oscillation and its gradient in the normal left coronary artery tree bifurcations.
    Soulis J; Fytanidis D; Seralidou K; Giannoglou G
    Hippokratia; 2014 Jan; 18(1):12-6. PubMed ID: 25125945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.