BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1387790)

  • 1. The same chemicals induce different neurotoxicity when administered in high doses for short term or low doses for long term to rats and dogs.
    Yoshimura S; Imai K; Saitoh Y; Yamaguchi H; Ohtaki S
    Mol Chem Neuropathol; 1992; 16(1-2):59-84. PubMed ID: 1387790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of toxicities of acrylamide and 2,5-hexanedione in hens and rats on 3-week dosing regimens.
    Jortner BS; Ehrich M
    J Toxicol Environ Health; 1993 Aug; 39(4):417-28. PubMed ID: 8345530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlated nerve conduction, somatosensory evoked potential and neuropathological studies in clioquinol and 2,5-hexanedione neurotoxicity in the baboon.
    Thomas PK; Bradley DJ; Bradley WA; Degen PH; Krinke G; Muddle J; Schaumburg HH; Skelton-Stroud PN; Thomann P; Tzebelikos E
    J Neurol Sci; 1984 Jun; 64(3):277-95. PubMed ID: 6236287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of 2,5-hexanedione and acrylamide on myosin heavy chain isoforms of slow and fast skeletal muscles of the rat.
    Oishi Y; Yamamoto H; Nagano M; Miyamoto E; Futatsuka M
    Toxicol Appl Pharmacol; 1996 Jul; 139(1):15-21. PubMed ID: 8685898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clioquinol and 2,5-hexanedione induce different types of distal axonopathy in the dog.
    Krinke G; Schaumburg HH; Spencer PS; Thomann P; Hess R
    Acta Neuropathol; 1979 Aug; 47(3):213-21. PubMed ID: 225920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotoxicity of acrylamide and 2,5-hexanedione in rats evaluated using a functional observational battery and pathological examination.
    Shell L; Rozum M; Jortner BS; Ehrich M
    Neurotoxicol Teratol; 1992; 14(4):273-83. PubMed ID: 1522832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of modification and degradation of neurofilament proteins in rats subchronically treated with allyl chloride, acrylamide, or 2,5-hexanedione.
    Nagano M; Yamamoto H; Harada K; Miyamoto E; Futatsuka M
    Environ Res; 1993 Nov; 63(2):229-40. PubMed ID: 8243417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Dying back" above a nerve ligature produced by acrylamide.
    Cavanagh JB; Gysbers MF
    Acta Neuropathol; 1980; 51(3):169-77. PubMed ID: 7445971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxic neurofilamentous axonopathies and fast anterograde axonal transport. IV. In vitro analysis of transport following acrylamide and 2,5-hexanedione.
    Sickles DW
    Toxicol Lett; 1992 Jul; 61(2-3):199-204. PubMed ID: 1641866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxic effects of somatostatin in the cerebellum and vestibular nuclei: multiple sites of action.
    Balaban CD; Severs WB
    Neurosci Res; 1991 Oct; 12(1):140-50. PubMed ID: 1684238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological studies of toxic distal axonopathy.
    Schaumburg HH
    Neurobehav Toxicol; 1979; 1 Suppl 1():187-8. PubMed ID: 299577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural studies of the dying-back process. IV. Differential vulnerability of PNS and CNS fibers in experimental central-peripheral distal axonopathies.
    Spencer PS; Schaumburg HH
    J Neuropathol Exp Neurol; 1977; 36(2):300-20. PubMed ID: 190358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redefining toxic distal axonopathies.
    LoPachin RM
    Toxicol Lett; 2000 Mar; 112-113():23-33. PubMed ID: 10720709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of central and peripheral nervous system lesions caused by high-dose short-term and low-dose subchronic acrylamide treatment in rats.
    O'Shaughnessy DJ; Losos GJ
    Toxicol Pathol; 1986; 14(4):389-94. PubMed ID: 3809891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxic neurofilamentous axonopathies and fast anterograde axonal transport. III. Recovery from single injections and multiple dosing effects of acrylamide and 2,5-hexanedione.
    Sickles DW
    Toxicol Appl Pharmacol; 1991 May; 108(3):390-6. PubMed ID: 2020966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-dependent lactate production by homogenates of neuronal tissues prepared from rats treated with 2,4-dithiobiuret, acrylamide, p-bromophenylacetylurea and 2,5-hexanedione.
    LoPachin RM; Moore RW; Menahan LA; Peterson RE
    Neurotoxicology; 1984; 5(2):25-35. PubMed ID: 6438566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of acrylamide and 2,5-hexanedione on brain mitochondrial respiration.
    Medrano CJ; LoPachin RM
    Neurotoxicology; 1989; 10(2):249-55. PubMed ID: 2616066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of dose rate on the neurotoxicity of acrylamide: the interaction of administered dose, target tissue concentrations, tissue damage, and functional effects.
    Crofton KM; Padilla S; Tilson HA; Anthony DC; Raymer JH; MacPhail RC
    Toxicol Appl Pharmacol; 1996 Jul; 139(1):163-76. PubMed ID: 8685900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acrylamide and 2,5-hexanedione induce collapse of neurofilaments in SH-SY5Y human neuroblastoma cells to form perikaryal inclusion bodies.
    Hartley CL; Anderson VE; Anderton BH; Robertson J
    Neuropathol Appl Neurobiol; 1997 Oct; 23(5):364-72. PubMed ID: 9364461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurotoxic effects of 2,5-hexanedione on normal and neurofilament-deficient quail.
    Hirai T; Mizutani M; Kimura T; Ochiai K; Umemura T; Itakura C
    Toxicol Pathol; 1999; 27(3):348-53. PubMed ID: 10356712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.