These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 1387857)
1. Contrasting action of short- and long-term adrenaline infusion on dog skeletal muscle glucose metabolism. Christopher MJ; Sleeman MW; Alford FP; Best JD Diabetologia; 1992 May; 35(5):399-405. PubMed ID: 1387857 [TBL] [Abstract][Full Text] [Related]
2. Epinephrine inhibits insulin-mediated glycogenesis but enhances glycolysis in human skeletal muscle. Raz I; Katz A; Spencer MK Am J Physiol; 1991 Mar; 260(3 Pt 1):E430-5. PubMed ID: 1900669 [TBL] [Abstract][Full Text] [Related]
3. The effect of adrenaline infusion on the regulation of glycogenolysis in human muscle during isometric contraction. Chasiotis D; Hultman E Acta Physiol Scand; 1985 Jan; 123(1):55-60. PubMed ID: 2982245 [TBL] [Abstract][Full Text] [Related]
4. Improved insulin-stimulated glucose uptake and glycogen synthase activation in rat skeletal muscles after adrenaline infusion: role of glycogen content and PKB phosphorylation. Jensen J; Ruzzin J; Jebens E; Brennesvik EO; Knardahl S Acta Physiol Scand; 2005 Jun; 184(2):121-30. PubMed ID: 15916672 [TBL] [Abstract][Full Text] [Related]
5. Effect of epinephrine on muscle glycogenolysis and insulin-stimulated muscle glycogen synthesis in humans. Laurent D; Petersen KF; Russell RR; Cline GW; Shulman GI Am J Physiol; 1998 Jan; 274(1):E130-8. PubMed ID: 9458758 [TBL] [Abstract][Full Text] [Related]
6. The temporal relationship between glycogen phosphorylase and activation of the pyruvate dehydrogenase complex during adrenaline infusion in resting canine skeletal muscle. Roberts PA; Loxham SJ; Poucher SM; Constantin-Teodosiu D; Greenhaff PL J Physiol; 2002 Nov; 545(1):297-304. PubMed ID: 12433969 [TBL] [Abstract][Full Text] [Related]
7. Glucose-fatty acid cycle operates in humans at the levels of both whole body and skeletal muscle during low and high physiological plasma insulin concentrations. Vaag AA; Handberg A; Skøtt P; Richter EA; Beck-Nielsen H Eur J Endocrinol; 1994 Jan; 130(1):70-9. PubMed ID: 8124481 [TBL] [Abstract][Full Text] [Related]
8. Regulation of glycogenolysis in human muscle in response to epinephrine infusion. Chasiotis D; Sahlin K; Hultman E J Appl Physiol Respir Environ Exerc Physiol; 1983 Jan; 54(1):45-50. PubMed ID: 6402474 [TBL] [Abstract][Full Text] [Related]
9. Studies of gene expression and activity of hexokinase, phosphofructokinase and glycogen synthase in human skeletal muscle in states of altered insulin-stimulated glucose metabolism. Vestergaard H Dan Med Bull; 1999 Feb; 46(1):13-34. PubMed ID: 10081651 [TBL] [Abstract][Full Text] [Related]
10. Effects of acute and chronic counterregulatory hormone infusions on glucose tolerance and insulin sensitivity in diabetic dogs. Sleeman MW; Christopher MJ; Martin IK; Ward GM; Alford FP; Best JD Diabetes; 1992 Nov; 41(11):1446-52. PubMed ID: 1397720 [TBL] [Abstract][Full Text] [Related]
11. Hyperglycemia induces accumulation of glucose in human skeletal muscle. Katz A; Raz I; Spencer MK; Rising R; Mott DM Am J Physiol; 1991 Apr; 260(4 Pt 2):R698-703. PubMed ID: 1672795 [TBL] [Abstract][Full Text] [Related]
12. Skeletal muscle glycogenolysis is more sensitive to insulin than is glucose transport/phosphorylation. Relation to the insulin-mediated inhibition of hepatic glucose production. Rossetti L; Hu M J Clin Invest; 1993 Dec; 92(6):2963-74. PubMed ID: 8254050 [TBL] [Abstract][Full Text] [Related]
13. Allosteric regulation of glycogen synthase and hexokinase by glucosamine-6-phosphate during glucosamine-induced insulin resistance in skeletal muscle and heart. Virkamäki A; Yki-Järvinen H Diabetes; 1999 May; 48(5):1101-7. PubMed ID: 10331416 [TBL] [Abstract][Full Text] [Related]
14. Impact of insulin deficiency on glucose fluxes and muscle glucose metabolism during exercise. Wasserman DH; Mohr T; Kelly P; Lacy DB; Bracy D Diabetes; 1992 Oct; 41(10):1229-38. PubMed ID: 1356861 [TBL] [Abstract][Full Text] [Related]
15. Effects of non-esterified fatty acid availability on insulin stimulated glucose utilisation and tissue pyruvate dehydrogenase activity in the rat. Kruszynska YT; McCormack JG; McIntyre N Diabetologia; 1990 Jul; 33(7):396-402. PubMed ID: 2119322 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of muscle glycogen synthase activity and non-oxidative glucose disposal during hypoglycaemia in normal man. Orskov L; Bak JF; Abildgård ; Schmitz O; Andreasen F; Richter EA; Skjaerbaek C; Møller N Diabetologia; 1996 Feb; 39(2):226-34. PubMed ID: 8635676 [TBL] [Abstract][Full Text] [Related]
17. Non-esterified fatty acids regulate lipid and glucose oxidation and glycogen synthesis in healthy man. Ebeling P; Koivisto VA Diabetologia; 1994 Feb; 37(2):202-9. PubMed ID: 8163056 [TBL] [Abstract][Full Text] [Related]
18. Expression of glycogen synthase and phosphofructokinase in muscle from type 1 (insulin-dependent) diabetic patients before and after intensive insulin treatment. Vestergaard H; Andersen PH; Lund S; Vedel P; Pedersen O Diabetologia; 1994 Jan; 37(1):82-90. PubMed ID: 7512060 [TBL] [Abstract][Full Text] [Related]
19. Effect of increased free fatty acid supply on glucose metabolism and skeletal muscle glycogen synthase activity in normal man. Johnson AB; Argyraki M; Thow JC; Cooper BG; Fulcher G; Taylor R Clin Sci (Lond); 1992 Feb; 82(2):219-26. PubMed ID: 1311661 [TBL] [Abstract][Full Text] [Related]
20. Adrenaline increases skeletal muscle glycogenolysis, pyruvate dehydrogenase activation and carbohydrate oxidation during moderate exercise in humans. Watt MJ; Howlett KF; Febbraio MA; Spriet LL; Hargreaves M J Physiol; 2001 Jul; 534(Pt 1):269-78. PubMed ID: 11433007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]