BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 1388154)

  • 1. The kinetics for the phosphoryl transfer steps of the sarcoplasmic reticulum calcium ATPase are the same with strontium and with calcium bound to the transport sites.
    Fujimori T; Jencks WP
    J Biol Chem; 1992 Sep; 267(26):18466-74. PubMed ID: 1388154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of two Sr2+ ions changes the chemical specificities for phosphorylation of the sarcoplasmic reticulum calcium ATPase through a stepwise mechanism.
    Fujimori T; Jencks WP
    J Biol Chem; 1992 Sep; 267(26):18475-87. PubMed ID: 1388155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of the sarcoplasmic reticulum calcium adenosinetriphosphatase with adenosine 5'-triphosphate and Ca2+ that are not satisfactorily described by an E1-E2 model.
    Stahl N; Jencks WP
    Biochemistry; 1987 Dec; 26(24):7654-67. PubMed ID: 2962640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative effects of Ca2+ and Sr2+ on sarcoplasmic reticulum adenosine triphosphatase.
    Holguín JA
    Arch Biochem Biophys; 1986 Nov; 251(1):9-16. PubMed ID: 3024577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of the calcium-transporting adenosinetriphosphatase by lanthanum ATP: rapid phosphoryl transfer following a rate-limiting conformational change.
    Hanel AM; Jencks WP
    Biochemistry; 1990 May; 29(21):5210-20. PubMed ID: 2143081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy interconversion in sarcoplasmic reticulum vesicles in the presence of Ca2+ and Sr2+ gradients.
    Guimarães-Motta H; Sande-Lemos MP; de Meis L
    J Biol Chem; 1984 Jul; 259(14):8699-705. PubMed ID: 6235215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of calcium from the phosphorylated calcium-transporting adenosine triphosphatase of sarcoplasmic reticulum: kinetic equivalence of the calcium ions bound to the phosphorylated enzyme.
    Hanel AM; Jencks WP
    Biochemistry; 1991 Nov; 30(47):11320-30. PubMed ID: 1835656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of the calcium adenosinetriphosphatase of sarcoplasmic reticulum: rate-limiting conformational change followed by rapid phosphoryl transfer.
    Petithory JR; Jencks WP
    Biochemistry; 1986 Aug; 25(16):4493-7. PubMed ID: 2945589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential dissociation of Ca2+ from the calcium adenosinetriphosphatase of sarcoplasmic reticulum and the calcium requirement for its phosphorylation by ATP.
    Petithory JR; Jencks WP
    Biochemistry; 1988 Jul; 27(15):5553-64. PubMed ID: 2972312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stoichiometries of calcium and strontium transport coupled to ATP and acetyl phosphate hydrolysis by skeletal sarcoplasmic reticulum.
    Berman MC; King SB
    Biochim Biophys Acta; 1990 Nov; 1029(2):235-40. PubMed ID: 2245209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of arsenate on the Ca2+ ATPase of sarcoplasmic reticulum.
    Alves EW; de Meis L
    Eur J Biochem; 1987 Aug; 166(3):647-51. PubMed ID: 2956098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of monovalent and divalent cations on the ATP-dependent Ca2+-binding and phosphorylation during the reaction cycle of the sarcoplasmic reticulum Ca2+-transport ATPase.
    Medda P; Fassold E; Hasselbach W
    Eur J Biochem; 1987 Jun; 165(2):251-9. PubMed ID: 2954819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinction of the roles of the two high-affinity calcium sites in the functional activities of the Ca2+-ATPase of sarcoplasmic reticulum.
    Scott TL; Shamoo AE
    Eur J Biochem; 1984 Sep; 143(2):427-36. PubMed ID: 6236083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of Ca2+ to the calcium adenosinetriphosphatase of sarcoplasmic reticulum.
    Petithory JR; Jencks WP
    Biochemistry; 1988 Nov; 27(23):8626-35. PubMed ID: 2975510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The binding of ATP and Mg2+ to the calcium adenosinetriphosphatase of sarcoplasmic reticulum follows a random mechanism.
    Reinstein J; Jencks WP
    Biochemistry; 1993 Jul; 32(26):6632-42. PubMed ID: 8329390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics of the calcium-transporting ATPase.
    Pickart CM; Jencks WP
    J Biol Chem; 1984 Feb; 259(3):1629-43. PubMed ID: 6229538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variable stoichiometric efficiency of Ca2+ and Sr2+ transport by the sarcoplasmic reticulum ATPase.
    Yu X; Inesi G
    J Biol Chem; 1995 Mar; 270(9):4361-7. PubMed ID: 7876199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion.
    Fujimori T; Jencks WP
    J Biol Chem; 1990 Sep; 265(27):16262-70. PubMed ID: 2144527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity for catalysis of phosphoryl transfer by the calcium ATPase of sarcoplasmic reticulum.
    Myung J; Jencks WP
    Arch Biochem Biophys; 1994 Aug; 313(1):39-46. PubMed ID: 8053684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase.
    Fukushima Y; Yamada S; Nakao M
    J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.