These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 13884322)

  • 21. Glucose metabolism in brain tissue: the hexosemonophosphate shunt and its role in glutathione reduction.
    HOTTA SS
    J Neurochem; 1962; 9():43-51. PubMed ID: 14449220
    [No Abstract]   [Full Text] [Related]  

  • 22. Glucose utilisation and hexose-monophosphate shunt in erythrocytes of patients with chronic renal failure.
    Górski J; Manitius A
    Proc Eur Dial Transplant Assoc; 1978; 15():630-2. PubMed ID: 740702
    [No Abstract]   [Full Text] [Related]  

  • 23. Effect of rate of ingestion of diet on hexosemonophosphate shunt activity.
    COHN C; JOSEPH D
    Am J Physiol; 1959 Dec; 197():1347-9. PubMed ID: 13811031
    [No Abstract]   [Full Text] [Related]  

  • 24. THE ACTION OF SOME CYTOSTATICS ON THE HEXOSE MONOPHOSPHATE SHUNT AND GLYCOLYSIS IN EXPERIMENTAL RAT TUMOURS.
    SVEC J; HUPKA S
    Biochem Pharmacol; 1964 Dec; 13():1663-9. PubMed ID: 14248394
    [No Abstract]   [Full Text] [Related]  

  • 25. Evidence for the existence of the hexose monophosphate pathway for glucose metabolism in the normal and denervated skeletal muscle of rats.
    ROSSI F; ZATTI M; GREENBAUM AL
    Biochem J; 1963 Apr; 87(1):43-8. PubMed ID: 13975179
    [No Abstract]   [Full Text] [Related]  

  • 26. [Effects in vitro of iodine and diiodotyrosine on the thyroid hexosemonophosphate shunt].
    DUMONT JE
    C R Seances Soc Biol Fil; 1961; 155():2225-8. PubMed ID: 13888380
    [No Abstract]   [Full Text] [Related]  

  • 27. The influence of adrenalectomy upon the activity of the hexosemonophosphate shunt in the livers and mammary glands of lactating rats.
    WILLMER JS
    Can J Biochem Physiol; 1960 Nov; 38():1265-73. PubMed ID: 13785595
    [No Abstract]   [Full Text] [Related]  

  • 28. Regeneration of reduced glutathione in erythrocytes: stoichiometric and temporal relationship to hexose monophosphate shunt activity.
    Metz EN; Balcerzak SP; Sagone AL
    Blood; 1974 Nov; 44(5):691-7. PubMed ID: 4422338
    [No Abstract]   [Full Text] [Related]  

  • 29. The mechanism of pentose phosphate conversion to hexose monophosphate. I. With a liver enzyme preparation.
    HORECKER BL; GIBBS M; KLENOW H; SMYRNIOTIS PZ
    J Biol Chem; 1954 Mar; 207(1):393-403. PubMed ID: 13152115
    [No Abstract]   [Full Text] [Related]  

  • 30. Red cell enzymes in myelodysplastic syndromes: a review.
    Lintula R
    Scand J Haematol Suppl; 1986; 45():56-9. PubMed ID: 3515520
    [No Abstract]   [Full Text] [Related]  

  • 31. A preliminary investigation of the hormonal control of the hexose monophosphate oxidative pathway.
    GLOCK GE; MCLEAN P
    Biochem J; 1955 Nov; 61(3):390-7. PubMed ID: 13269373
    [No Abstract]   [Full Text] [Related]  

  • 32. The mechanism of pentose phosphate conversion to hexose monophosphate. II. With pea leaf and pea root preparations.
    GIBBS M; HORECKER BL
    J Biol Chem; 1954 Jun; 208(2):813-20. PubMed ID: 13174590
    [No Abstract]   [Full Text] [Related]  

  • 33. Effects of sulfhydryl inhibition on red blood cells. 3. Glutathione in the regulation of the hexose monophosphate pathway.
    Jacob HS; Jandl JH
    J Biol Chem; 1966 Sep; 241(18):4243-50. PubMed ID: 4380814
    [No Abstract]   [Full Text] [Related]  

  • 34. Mechanisms of methylene blue stimulation of the hexose monophosphate shunt in erythrocytes.
    Metz EN; Balcerzak P; Sagone AL
    J Clin Invest; 1976 Oct; 58(4):797-802. PubMed ID: 965487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Interaction of the Embden-Meyerhof pathway and hexose monophosphate shunt in erythrocytes].
    Ataullakhanov FI; Buravtsev VN; Zhabotinskiĩ AM; Norina SB; Pichugin AV
    Biokhimiia; 1981 Apr; 46(4):723-31. PubMed ID: 7284486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Effects of the hexose monophosphate shunt as mediated by glutathione and ascorbate.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1982 May; 204(2):405-15. PubMed ID: 7115337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hexose monophosphate shunt-stimulated reduction of methemoglobin by divicine.
    Benatti U; Guida L; Grasso M; Tonetti M; De Flora A; Winterbourn CC
    Arch Biochem Biophys; 1985 Nov; 242(2):549-56. PubMed ID: 4062295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolism of [14C]glucose in Haemobartonella-like infected erythrocytes in splenectomized calves.
    Love JN; Wilson RP; McEwen EG; Wiygul G
    Am J Vet Res; 1977 Jun; 38(6):739-41. PubMed ID: 879573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Virus-induced hemolysis in erythrocytes deficient in glucose-6-phhosphate dehydrogenase.
    Necheles TF; Gorshein D
    Science; 1968 May; 160(3827):535-7. PubMed ID: 5644057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulation by propylthiouracil of the hexose monophosphate shunt in human polymorphonuclear leucocytes during phagocytosis.
    Tsan MF; McIntyre PA
    Br J Haematol; 1975 Oct; 31(2):193-208. PubMed ID: 1201238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.