These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 138862)

  • 1. Biological ion exchanger resins. X. The cytotonus hypothesis: biological contractility and the total regulation of cellular physiology through quantitative control of cell water.
    Minkoff L; Damadian R
    Physiol Chem Phys; 1976; 8(4):349-87. PubMed ID: 138862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin-like properties from Escherichia coli: concept of cytotonus as the missing link between cell metabolism and the biological ion-exchange resin.
    Minkoff L; Damadian R
    J Bacteriol; 1976 Jan; 125(1):353-65. PubMed ID: 1107311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological ion exchanger resins: VIII. A preliminary report on actin-like protein in E. coli and the cytotonus concept.
    Minkoff L; Damadian R
    Physiol Chem Phys; 1975; 7(4):385-9. PubMed ID: 1103166
    [No Abstract]   [Full Text] [Related]  

  • 4. Biological ion exchanger resins; IX. Isolation and partial identification of a potassium sensitive contractile-like protein from E. coli.
    Minkoff L; Abramowitz J; Damadian R
    Physiol Chem Phys; 1976; 8(2):167-73. PubMed ID: 790423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative phosphorylation and mitochondrial physiology: a critical review of chemiosmotic theory, and reinterpretation by the association-induction hypothesis.
    Ling GN
    Physiol Chem Phys; 1981; 13(1):29-96. PubMed ID: 7022492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium.
    Trchounian A; Ohanjayan E; Zakharyan E
    Membr Cell Biol; 1998; 12(1):67-78. PubMed ID: 9829260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kdp-like system in Salmonella typhimurium LT-2.
    Garcia-Cuellar C; Cienfuegos L; Bautista R; Castillo-Rivera L; Alvarez-Jacobs J; Guerrero AL; de la Garza M
    Rev Latinoam Microbiol; 1995; 37(3):227-36. PubMed ID: 8850341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Regulation of oxidative phosphorylation, K+ ions transport and the volume of mitochondrial matrix by cytoplasmic glycopeptide and Ca2+ ions].
    Gaĭnutdinov MKh; Ishmukhamedov RN; Konov V; Luchenko MB; Mirmakhmudova S
    Biokhimiia; 1988 Feb; 53(2):196-204. PubMed ID: 3370248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Model of proton-potassium transport systems].
    Martirosov SM; Panosian GA; Trchunian AA
    Biofizika; 1982; 27(2):249-52. PubMed ID: 6176277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Role of Arc-system for the control of synthesis of respiratory enzymes in regulation of K+-transporting system in glycolysing Escherichia coli].
    Trchunian AA; Vardanian VA; Vasilian AV
    Biofizika; 1998; 43(3):470-4. PubMed ID: 9702339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Active transport of K+ in mitochondria of the wild strain and respiratory mutants of Saccharomyces cerevisiae].
    Golubkov VI; Kazakova TB; Leont'ev VG
    Biokhimiia; 1969; 34(5):944-50. PubMed ID: 5364627
    [No Abstract]   [Full Text] [Related]  

  • 12. A physical theory of the living state: application to water and solute distribution.
    Ling GN
    Scanning Microsc; 1988 Jun; 2(2):899-913. PubMed ID: 3399856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Control of the induction of ion transport through mitochondrial membranes by the enzymes of the oxidative phosphorylation system].
    Novgorodov SA; Dragunova SF; Iaguzhinskiĭ LS
    Biofizika; 1982; 27(2):244-8. PubMed ID: 6462181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Regulation of ion transport in mitochondria by respiratory chain enzymes and ATPase].
    Novgorodov SA; Marshanskiĭ VN; Iaguzhinskiĭ LS
    Biokhimiia; 1984 Feb; 49(2):185-92. PubMed ID: 6324890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single amino acid substitution in the putative transmembrane helix V in KdpB of the KdpFABC complex of Escherichia coli uncouples ATPase activity and ion transport.
    Bramkamp M; Altendorf K
    Biochemistry; 2005 Jun; 44(23):8260-6. PubMed ID: 15938615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of mutants of Escherichia coli K12 in studying electron transport and oxidative phosphorylation.
    Gibson F; Cox GB
    Essays Biochem; 1973; 9():1-29. PubMed ID: 4149255
    [No Abstract]   [Full Text] [Related]  

  • 17. Ion transport in hepatocytes: mechanisms and correlations to cell volume, hormone actions and metabolism.
    Graf J; Häussinger D
    J Hepatol; 1996; 24 Suppl 1():53-77. PubMed ID: 8926370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic aspects of the cardiac muscle cell: mitochondria, sarcoplasmic reticulum and nonovalent cation active transport system.
    Sordahl LA; Besch HR; Allen JC; Crow C; Lindenmayer GE; Schwartz A
    Methods Achiev Exp Pathol; 1971; 5():287-346. PubMed ID: 4263899
    [No Abstract]   [Full Text] [Related]  

  • 19. Membrane transport and the activity of water near the membrane surface.
    Parsegian VA; Rand RP
    Prog Clin Biol Res; 1983; 126():283-95. PubMed ID: 6889392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-dependent volume regulation in primary cultured cerebral astrocytes.
    Olson JE; Sankar R; Holtzman D; James A; Fleischhacker D
    J Cell Physiol; 1986 Aug; 128(2):209-15. PubMed ID: 3015986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.