These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1388701)

  • 1. Investigation of the mechanism of the effect of tacrine (tetrahydroaminoacridine) on the metabolism of acetylcholine and choline in brain cortical prisms.
    Dolezal V; Tucek S
    J Neural Transm Park Dis Dement Sect; 1992; 4():303-18. PubMed ID: 1388701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive and negative effects of tacrine (tetrahydroaminoacridine) and methoxytacrine on the metabolism of acetylcholine in brain cortical prisms incubated under "resting" conditions.
    Dolezal V; Tucek S
    J Neurochem; 1991 Apr; 56(4):1207-15. PubMed ID: 2002337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative effects of tacrine (tetrahydroaminoacridine) and methoxytacrine on the metabolism of acetylcholine in brain slices incubated under conditions stimulating neurotransmitter release.
    Tucek S; Dolezal V
    J Neurochem; 1991 Apr; 56(4):1216-21. PubMed ID: 1672143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylcholine and choline in rat adrenals and brain cortex prisms incubated at elevated concentrations of choline in the medium.
    Dolezal V; Tucek S
    Brain Res; 1988 May; 449(1-2):244-52. PubMed ID: 3395847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nicotine and tacrine on acetylcholine release from rat cerebral cortical slices.
    Loiacono RE; Mitchelson FJ
    Naunyn Schmiedebergs Arch Pharmacol; 1990 Jul; 342(1):31-5. PubMed ID: 2402302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic muscarinic receptors and the release of acetylcholine from cerebrocortical prisms: roles of Ca2+ and K+ concentrations.
    Dolezal V; Tucek S
    Naunyn Schmiedebergs Arch Pharmacol; 1993 Sep; 348(3):228-33. PubMed ID: 8232600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-affinity uptake of choline, a marker for cholinergic nerve terminals, is not specific in developing rat brain.
    Kotas AM; Prince AK
    Brain Res; 1987 Oct; 432(2):175-81. PubMed ID: 3676836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of choline efflux results in enhanced acetylcholine synthesis and release in the guinea-pig corticocerebral synaptosomes.
    Pittel Z; Heldman E; Rubinstein R; Cohen S
    Neurochem Int; 1992 Feb; 20(2):219-27. PubMed ID: 1284802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in acetylcholine metabolism in rat striatal slices by a 4-methyl piperidine analog of hemicholinium-3.
    Tedford CE; Flynn JR; Bhatnagar RK; Cannon JG; Long JP
    J Pharmacol Exp Ther; 1988 Nov; 247(2):460-5. PubMed ID: 3183948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synthesis and release of acetylcholine by depolarized hippocampal slices is increased by increased choline available in vitro prior to stimulation.
    Wecker L
    J Neurochem; 1991 Oct; 57(4):1119-27. PubMed ID: 1895099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of tetrahydroaminoacridine-evoked release of endogenous 5-hydroxytryptamine and dopamine from rat brain tissue prisms.
    Robinson TN; De Souza RJ; Cross AJ; Green AR
    Br J Pharmacol; 1989 Dec; 98(4):1127-36. PubMed ID: 2611486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential release of newly synthesized 3 H-acetylcholine from rat cerebral cortex slices in vitro.
    Molenaar PC; Nickolson VJ; Polak RL
    Br J Pharmacol; 1973 Jan; 47(1):97-108. PubMed ID: 4717024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylcholine metabolism and choline uptake in cortical slices.
    Polak RL; Molenaar PC; van Gelder M
    J Neurochem; 1977 Sep; 29(3):477-85. PubMed ID: 894304
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of potassium depolarization and preganglionic nerve stimulation on the metabolism of [3H]-choline in rat isolated sympathetic ganglia.
    Higgins AJ; Neal MJ
    Br J Pharmacol; 1982 Dec; 77(4):581-90. PubMed ID: 7150867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of choline uptake for the synthesis and release of acetylcholine in brain slices by a dynamic autoradiographic technique using [11C]choline.
    Sasaki T; Kawamura K; Tanaka Y; Ando S; Senda M
    Brain Res Brain Res Protoc; 2002 Aug; 10(1):1-11. PubMed ID: 12379431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4-Aminopyridine increases acetylcholine release without diminishing membrane phosphatidylcholine.
    Buyukuysal RL; Wurtman RJ
    J Neurochem; 1990 Apr; 54(4):1302-9. PubMed ID: 2313289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precursor dependence of acetylcholine release from rat brain in vitro.
    Millington WR; Goldberg AM
    Brain Res; 1982 Jul; 243(2):263-70. PubMed ID: 7104738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The synthesis and release of acetylcholine in normal and denervated rat diaphragms during incubation in vitro.
    Dolezal V; Tucek S
    J Physiol; 1983 Jan; 334():461-74. PubMed ID: 6864565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipid-derived choline intermediates and acetylcholine synthesis in mouse brain synaptosomes.
    Yavin E; Tanaka Y; Ando S
    J Neurosci Res; 1989 Oct; 24(2):241-6. PubMed ID: 2585548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of acetylcholine release by measuring efflux of labelled choline from cerebral cortical slices.
    Somogyi GT; Szerb JC
    J Neurochem; 1972 Nov; 19(11):2667-77. PubMed ID: 5086251
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.