These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 13888736)

  • 1. The synthesis of sucrose by extracts of the root of the sugar beet.
    DUTTON JV; CARRUTHERS A; OLDFIELD
    Biochem J; 1961 Nov; 81(2):266-72. PubMed ID: 13888736
    [No Abstract]   [Full Text] [Related]  

  • 2. The biosynthesis of uridine diphosphate glucose and sucrose in sugar beet leaf.
    BURMA DP; MORTIMER DC
    Arch Biochem Biophys; 1956 May; 62(1):16-28. PubMed ID: 13314634
    [No Abstract]   [Full Text] [Related]  

  • 3. The path of carbon in photosynthesis. XIX. The identification of sucrose phosphate in sugar beet leaves.
    BUCHANAN JG
    Arch Biochem Biophys; 1953 May; 44(1):140-9. PubMed ID: 13058362
    [No Abstract]   [Full Text] [Related]  

  • 4. [The dynamics of hormonal status of developing red beet root (Beta vulgaris L.) in correlation with the dynamics of sugar accumulation].
    Ozolina NV; Pradedova EV; Saliaev RK
    Izv Akad Nauk Ser Biol; 2005; (1):30-5. PubMed ID: 15768631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet.
    Bellin D; Schulz B; Soerensen TR; Salamini F; Schneider K
    J Exp Bot; 2007; 58(3):699-715. PubMed ID: 17307746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterisation and cell specificity of BvSUT1, the transporter that loads sucrose into the phloem of sugar beet (Beta vulgaris L.) source leaves.
    Nieberl P; Ehrl C; Pommerrenig B; Graus D; Marten I; Jung B; Ludewig F; Koch W; Harms K; Flügge UI; Neuhaus HE; Hedrich R; Sauer N
    Plant Biol (Stuttg); 2017 May; 19(3):315-326. PubMed ID: 28075052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative transcriptomics reveals genotypic impact on sugar beet storability.
    Madritsch S; Bomers S; Posekany A; Burg A; Birke R; Emerstorfer F; Turetschek R; Otte S; Eigner H; Sehr EM
    Plant Mol Biol; 2020 Nov; 104(4-5):359-378. PubMed ID: 32754876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THE DEVELOPMENT OF INVERTASE ACTIVITY IN SLICES OF THE ROOT OF BETA VULGARIS L. WASHED UNDER ASEPTIC CONDITIONS.
    BACON JS; MACDONALD IR; KNIGHT AH
    Biochem J; 1965 Jan; 94(1):175-82. PubMed ID: 14342226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Beet necrotic yellow vein virus and Freezing Temperatures on Sugar Beet Roots in Storage.
    Strausbaugh CA; Eujayl IA
    Plant Dis; 2018 May; 102(5):932-937. PubMed ID: 30673380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of subsoiling on the yield of sugar beet under conditions of rhizomania infection.
    Németh L; Kuroli G
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):321-5. PubMed ID: 12701439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional differentiation of the sugar beet root system as indicator of developmental phase change.
    Trebbi D; McGrath JM
    Physiol Plant; 2009 Jan; 135(1):84-97. PubMed ID: 19121102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorometric sucrose evaluation for sugar beet.
    Trebbi D; McGrath JM
    J Agric Food Chem; 2004 Nov; 52(23):6862-7. PubMed ID: 15537287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taproot promoters cause tissue specific gene expression within the storage root of sugar beet.
    Oltmanns H; Kloos DU; Briess W; Pflugmacher M; Stahl DJ; Hehl R
    Planta; 2006 Aug; 224(3):485-95. PubMed ID: 16482437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves.
    Hermans C; Bourgis F; Faucher M; Strasser RJ; Delrot S; Verbruggen N
    Planta; 2005 Feb; 220(4):541-9. PubMed ID: 15580527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sucrose transport in the phloem: integrating root responses to phosphorus starvation.
    Hammond JP; White PJ
    J Exp Bot; 2008; 59(1):93-109. PubMed ID: 18212031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na/H antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots.
    Liu H; Wang Q; Yu M; Zhang Y; Wu Y; Zhang H
    Plant Cell Environ; 2008 Sep; 31(9):1325-34. PubMed ID: 18518917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iTRAQ-Based Comparative Proteomic Analysis Provides Insights into Molecular Mechanisms of Salt Tolerance in Sugar Beet (
    Wu GQ; Wang JL; Feng RJ; Li SJ; Wang CM
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Processes and Biological Macromolecules Defined the Positive Effects of Protein-Rich Biostimulants on Sugar Beet Plant Development.
    Jolayemi OL; Malik AH; Vetukuri RR; Saripella GV; Kalyandurg PB; Ekblad T; Yong JWH; Olsson ME; Johansson E
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Site of synthesis of saccharose in beet].
    KURSANOV AL; PAVLINOVA OA
    Biokhimiia; 1952; 17(4):446-55. PubMed ID: 13081642
    [No Abstract]   [Full Text] [Related]  

  • 20. [Participation of phosphorylated sugars in respiration of beet].
    PAVLINOVA OA
    Dokl Akad Nauk SSSR; 1952 Aug; 85(4):851-4. PubMed ID: 12998487
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.