These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 13893003)

  • 1. Enzyme reactions with phenolic compounds: formation of hydroxystyrenes through the decarboxylation of 4-hydroxycinnamic acids by Aerobacter.
    FINKLE BJ; LEWIS JC; CORSE JW; LUNDIN RE
    J Biol Chem; 1962 Sep; 237():2926-31. PubMed ID: 13893003
    [No Abstract]   [Full Text] [Related]  

  • 2. Stereochemistry of decarboxylation of trans-4-hydroxycinnamic acid by Aerobacter.
    Parry RJ
    Proc Natl Acad Sci U S A; 1975 May; 72(5):1681-83. PubMed ID: 1057163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decarboxylative conversion of hydroxycinnamic acids to hydroxystyrenes by Polyporus circinata.
    Bayne HG; Finkle BJ; Lundin RE
    J Gen Microbiol; 1976 Jul; 95(1):188-90. PubMed ID: 956775
    [No Abstract]   [Full Text] [Related]  

  • 4. Efficient synthesis of hydroxystyrenes via biocatalytic decarboxylation/deacetylation of substituted cinnamic acids by newly isolated Pantoea agglomerans strains.
    Sharma UK; Sharma N; Salwan R; Kumar R; Kasana RC; Sinha AK
    J Sci Food Agric; 2012 Feb; 92(3):610-7. PubMed ID: 21919002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decarboxylation of substituted cinnamic acids by enterobacteria: the influence on beer flavour.
    Lindsay RF; Priest FG
    J Appl Bacteriol; 1975 Oct; 39(2):181-7. PubMed ID: 1194135
    [No Abstract]   [Full Text] [Related]  

  • 6. Stereochemically specific proton transfer in decarboxylation of 4-hydroxycinnamic acids by 4-hydroxycinnamate decarboxylase from Klebsiella oxytoca.
    Hashidoko Y; Tahara S
    Arch Biochem Biophys; 1998 Nov; 359(2):225-30. PubMed ID: 9808764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delineating compartmentalized control of phenylpropanoid metabolism.
    Colquhoun TA
    J Chem Ecol; 2012 Mar; 38(3):230. PubMed ID: 22415554
    [No Abstract]   [Full Text] [Related]  

  • 8. Bioconversion of cinnamic acid derivatives by Schizophyllum commune.
    Nimura Y; Tsujiyama S; Ueno M
    J Gen Appl Microbiol; 2010 Oct; 56(5):381-7. PubMed ID: 21099134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.
    Silva I; Campos FM; Hogg T; Couto JA
    J Appl Microbiol; 2011 Aug; 111(2):360-70. PubMed ID: 21575111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of Halomonas sp. strain IMPC, a p-coumaric acid-metabolizing bacterium that decarboxylates other cinnamic acids under hypersaline conditions.
    Abdelkafi S; Labat M; Casalot L; Chamkha M; Sayadi S
    FEMS Microbiol Lett; 2006 Feb; 255(1):108-14. PubMed ID: 16436069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae.
    Mukai N; Masaki K; Fujii T; Kawamukai M; Iefuji H
    J Biosci Bioeng; 2010 Jun; 109(6):564-9. PubMed ID: 20471595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.
    Lee H; Park J; Jung C; Han D; Seo J; Ahn JH; Chong Y; Hur HG
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9473-81. PubMed ID: 26059194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O-demethylation, dehydroxylation, ring-reduction and cleavage of aromatic substrates by Enterobacteriaceae under anaerobic conditions.
    Grbić-Galić D
    J Appl Bacteriol; 1986 Dec; 61(6):491-7. PubMed ID: 3549663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of thermal sterilization on ferulic, coumaric and cinnamic acids: dimerization and antioxidant activity.
    Arrieta-Baez D; Dorantes-Álvarez L; Martinez-Torres R; Zepeda-Vallejo G; Jaramillo-Flores ME; Ortiz-Moreno A; Aparicio-Ozores G
    J Sci Food Agric; 2012 Oct; 92(13):2715-20. PubMed ID: 22522234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decarboxylation of 4-hydroxycinnamic acids by Bacillus strains isolated from rat intestine.
    Indahl SR; Scheline RR
    Appl Microbiol; 1968 Apr; 16(4):667. PubMed ID: 5647528
    [No Abstract]   [Full Text] [Related]  

  • 16. Genetic Determinants of Hydroxycinnamic Acid Metabolism in Heterofermentative Lactobacilli.
    Gaur G; Oh JH; Filannino P; Gobbetti M; van Pijkeren JP; Gänzle MG
    Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ruminant digestion and metabolism on phenolic monomers of forages.
    Jung HJ; Fahey GC; Merchen NR
    Br J Nutr; 1983 Nov; 50(3):637-51. PubMed ID: 6639924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives.
    Furuya T; Kino K
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1145-54. PubMed ID: 23666444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods.
    Herrmann K
    Crit Rev Food Sci Nutr; 1989; 28(4):315-47. PubMed ID: 2690858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The metabolism of phenolic acids in the rat.
    Ranganathan S; Ramasarma T
    Biochem J; 1974 Jun; 140(3):517-22. PubMed ID: 4447627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.