These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 13895763)

  • 1. Changes in composition of cellular material during formation of phycobilin chromoproteids in a blue-green alga, Tolypothrix tenuis.
    FUJITA Y; HATTORI A
    J Biochem; 1962 Jul; 52():38-42. PubMed ID: 13895763
    [No Abstract]   [Full Text] [Related]  

  • 2. Biosynthesis of phycobilins. Formation of the chromophore of phytochrome, phycocyanin and phycoerythrin.
    Brown SB; Houghton JD; Vernon DI
    J Photochem Photobiol B; 1990 Apr; 5(1):3-23. PubMed ID: 2111391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary note on a new phycobilin pigment isolated from blue-green algae.
    FUJITA Y; HATTORI A
    J Biochem; 1962 Jan; 51():89-91. PubMed ID: 13895764
    [No Abstract]   [Full Text] [Related]  

  • 4. Ultrastructure of blue-green algae.
    Gantt E; Conti SF
    J Bacteriol; 1969 Mar; 97(3):1486-93. PubMed ID: 5776533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation between pigment content and photosynthetic characteristics in a blue-green algae.
    MYERS J; KRATZ WA
    J Gen Physiol; 1955 Sep; 39(1):11-22. PubMed ID: 13252232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of phycobilins from Porphyra naiadum.
    AIRTH RL; BLINKS LR
    J Gen Physiol; 1957 Sep; 41(1):77-90. PubMed ID: 13463270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence from sensitizing phycobilin chromophores in the blue-green alga Anacystis nidulans.
    Csatorday K
    Biochim Biophys Acta; 1978 Nov; 504(2):341-3. PubMed ID: 102340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On phycocyanin participation in the Hill reaction of the blue-green alga Synechococcus cedrorum.
    THOMAS JB; DE ROVER W
    Biochim Biophys Acta; 1955 Mar; 16(3):391-5. PubMed ID: 14378168
    [No Abstract]   [Full Text] [Related]  

  • 9. SPECTRAL PROPERTIES OF THE PHYCOBILINS. II. PHYCOERYTHROBILIN.
    OCARRA P; OHEOCHA C; CARRROLL DM
    Biochemistry; 1964 Sep; 3():1343-50. PubMed ID: 14229679
    [No Abstract]   [Full Text] [Related]  

  • 10. Dark and photometabolism of sugars by a blue green alga: Tolypothrix tenuis.
    Cheung WY; Gibbs M
    Plant Physiol; 1966 Apr; 41(4):731-7. PubMed ID: 5932406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nature and distribution of carotenoids in some blue-green algae.
    GOODWIN TW
    J Gen Microbiol; 1957 Oct; 17(2):467-73. PubMed ID: 13481328
    [No Abstract]   [Full Text] [Related]  

  • 12. Photosynthetic pigments: perplexing persistent prevalence of 'superfluous' pigment production.
    Beale SI
    Curr Biol; 2008 Apr; 18(8):R342-3. PubMed ID: 18430634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of extracts of blue-green algae on pigment production by Serratia marcescens.
    DAVIDSON FF
    J Gen Microbiol; 1959 Jun; 20(3):605-11. PubMed ID: 13664907
    [No Abstract]   [Full Text] [Related]  

  • 14. Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition.
    McConnell MD; Koop R; Vasil'ev S; Bruce D
    Plant Physiol; 2002 Nov; 130(3):1201-12. PubMed ID: 12427987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
    Cavalier-Smith T
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The native forms of the phycobilin chromophores of algal biliproteins. A clarification.
    O'Carra P; Murphy RF; Killilea SD
    Biochem J; 1980 May; 187(2):303-9. PubMed ID: 7396851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in quantum yield of photosynthesis in the red alga Porphyridium cruentum caused by stepwise reduction in the intensity of light preferentially absorbed by the phycobilins.
    THOMAS JB; GOVINDJEE
    Biophys J; 1960 Sep; 1(1):63-72. PubMed ID: 13776490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The absorption and fluorescence spectra of the cyanobacterial phycobilins of cryptoendolithic lichens in the high-polar region of Antarctica].
    Erokhina LG; Shatilovich AV; Kaminskaia OP; Gilichinskiĭ DA
    Mikrobiologiia; 2002; 71(5):697-704. PubMed ID: 12449638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochemically active chromoprotein isolated from the blue-green alga Anabaena cylindrica.
    Fujita Y; Tsuji T
    Nature; 1968 Sep; 219(5160):1270-1. PubMed ID: 5677430
    [No Abstract]   [Full Text] [Related]  

  • 20. Conditions governing haematochrome formation and loss in the alga Haematocuccus pluvialis Flotow.
    DROOP MR
    Arch Mikrobiol; 1954; 20(4):391-7. PubMed ID: 13208223
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.