These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 1389995)

  • 21. Reactions of Saccharomyces cerevisiae and Zygosaccharomyces bailii to sulphite.
    Pilkington BJ; Rose AH
    J Gen Microbiol; 1988 Oct; 134(10):2823-30. PubMed ID: 3076174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular cloning and sequence analysis of the Zygosaccharomyces rouxiiLEU2 gene encoding a beta-isopropylmalate dehydrogenase.
    Sychrová H
    Yeast; 2001 Jul; 18(10):989-94. PubMed ID: 11447605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular monitoring of spoilage yeasts during the production of candied fruit nougats to determine food contamination sources.
    Martorell P; Fernández-Espinar MT; Querol A
    Int J Food Microbiol; 2005 Jun; 101(3):293-302. PubMed ID: 15925712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Yeast plasmids resembling 2 micron DNA: regional similarities and diversities at the molecular level.
    Utatsu I; Sakamoto S; Imura T; Toh-e A
    J Bacteriol; 1987 Dec; 169(12):5537-45. PubMed ID: 3680169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid identification of Zygosaccharomyces with genus-specific primers.
    Hulin M; Wheals A
    Int J Food Microbiol; 2014 Mar; 173():9-13. PubMed ID: 24382328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A note on the presence of novel DNA species in the spoilage yeasts Zygosaccharomyces bailii and Pichia membranaefaciens.
    Painting KA; Kirsop B
    J Appl Bacteriol; 1984 Apr; 56(2):331-5. PubMed ID: 6725163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organization of specific genomic regions of Zygosaccharomyces rouxii and Pichia sorbitophila: comparison with Saccharomyces cerevisiae.
    Sychrova H; Braun V; Potier S; Souciet JL
    Yeast; 2000 Nov; 16(15):1377-85. PubMed ID: 11054818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitory effect of four novel synthetic peptides on food spoilage yeasts.
    Shwaiki LN; Arendt EK; Lynch KM; Thery TLC
    Int J Food Microbiol; 2019 Jul; 300():43-52. PubMed ID: 31035250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of L-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii.
    Sauer M; Branduardi P; Valli M; Porro D
    Appl Environ Microbiol; 2004 Oct; 70(10):6086-91. PubMed ID: 15466554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of a killer strain of Zygosaccharomyces bailii.
    Radler F; Herzberger S; Schönig I; Schwarz P
    J Gen Microbiol; 1993 Mar; 139(3):495-500. PubMed ID: 8473858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A set of plasmids carrying antibiotic resistance markers and Cre recombinase for genetic engineering of nonconventional yeast Zygosaccharomyces rouxii.
    Bizzarri M; Cassanelli S; Dušková M; Sychrová H; Solieri L
    Yeast; 2019 Dec; 36(12):711-722. PubMed ID: 31414502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic interrelationship among species of the genus Zygosaccharomyces as revealed by small-subunit rRNA gene sequences.
    James SA; Collins MD; Roberts IN
    Yeast; 1994 Jul; 10(7):871-81. PubMed ID: 7985415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular assessment of indigenous yeast population from traditional balsamic vinegar.
    Solieri L; Landi S; De Vero L; Giudici P
    J Appl Microbiol; 2006 Jul; 101(1):63-71. PubMed ID: 16834592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular and functional organization of yeast plasmid pSR1.
    Araki H; Jearnpipatkul A; Tatsumi H; Sakurai T; Ushio K; Muta T; Oshima Y
    J Mol Biol; 1985 Mar; 182(2):191-203. PubMed ID: 3889347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae.
    Li C; Jiang W; Ma N; Zhu Y; Dong X; Wang D; Meng X; Xu Y
    Bioresour Technol; 2014 Mar; 155():116-21. PubMed ID: 24440489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species.
    Posey KL; Koufopanou V; Burt A; Gimble FS
    Nucleic Acids Res; 2004; 32(13):3947-56. PubMed ID: 15280510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmids resembling 2-micrometers DNA in the osmotolerant yeasts Saccharomyces bailii and Saccharomyces bisporus.
    Toh-e A; Araki H; Utatsu I; Oshima Y
    J Gen Microbiol; 1984 Oct; 130(10):2527-34. PubMed ID: 6096485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and sequence analysis of the gene encoding triose phosphate isomerase from Zygosaccharomyces bailii.
    Merico A; Rodrigues F; Côrte-Real M; Porro D; Ranzi BM; Compagno C
    Yeast; 2001 Jun; 18(9):775-80. PubMed ID: 11427959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular tools and protocols for engineering the acid-tolerant yeast Zygosaccharomyces bailii as a potential cell factory.
    Branduardi P; Dato L; Porro D
    Methods Mol Biol; 2014; 1152():63-85. PubMed ID: 24744027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strain typing of Zygosaccharomyces yeast species using a single molecular method based on polymorphism of the intergenic spacer region (IGS).
    Wrent P; Rivas EM; Peinado JM; de Silóniz MI
    Int J Food Microbiol; 2010 Aug; 142(1-2):89-96. PubMed ID: 20619910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.