These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 13903226)

  • 1. The formation of n-propyl alcohol by Saccharomyces cerevisiae.
    GUYMON JF; INGRAHAM JL; CROWELL EA
    Arch Biochem Biophys; 1961 Oct; 95():163-8. PubMed ID: 13903226
    [No Abstract]   [Full Text] [Related]  

  • 2. [Transformation of labeled acetate by yeast during anaerobic fermentation; formation of succinic acid, isopropanol, amyl alcohol and sterols].
    GENEVOIS L; LAFON M
    Bull Soc Chim Biol (Paris); 1956 Apr; 38(1):89-97. PubMed ID: 13329638
    [No Abstract]   [Full Text] [Related]  

  • 3. Conversion of alpha-amino-n-butyric acid to n-propanol during alcoholic fermentation.
    KEPNER RE; CASTOR JG; WEBB AD
    Arch Biochem Biophys; 1954 Jul; 51(1):88-93. PubMed ID: 13181463
    [No Abstract]   [Full Text] [Related]  

  • 4. [The formation of higher alcohols by amino acid auxotrophic mutants of Saccharomyces cerevisiae. III. Higher alcohols as byproducts of the biosynthesis of amino acids tauthor's transl)].
    Vollbrecht D; Radler F
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1975; 130(3):238-44. PubMed ID: 1103521
    [No Abstract]   [Full Text] [Related]  

  • 5. Growth-inhibition of "Saccharomyces cerevisiae" by n-propyl alcohol.
    Sugar J; Schimpfessel L; Crockaert R
    Arch Int Physiol Biochim; 1968 Dec; 76(5):951-3. PubMed ID: 4184443
    [No Abstract]   [Full Text] [Related]  

  • 6. Metabolism of silage alcohols in lactating dairy cows.
    Kristensen NB; Storm A; Raun BM; Røjen BA; Harmon DL
    J Dairy Sci; 2007 Mar; 90(3):1364-77. PubMed ID: 17297111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ESTERASE ACTIVITY IN AN ETHYL ACETATE PRODUCING YEAST.
    SMITH JL; MARTIN WR
    Can J Microbiol; 1964 Apr; 10():267-72. PubMed ID: 14171647
    [No Abstract]   [Full Text] [Related]  

  • 8. 'Fusel' alcohols induce hyphal-like extensions and pseudohyphal formation in yeasts.
    Dickinson JR
    Microbiology (Reading); 1996 Jun; 142 ( Pt 6)():1391-1397. PubMed ID: 8704979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biological oxidation of ethyl alcohol into acetaldehyde by the method of immersed dispersed culture].
    TER-KARAPETIAN MA
    Dokl Akad Nauk SSSR; 1952 Apr; 83(6):885-8. PubMed ID: 14926626
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of ethanol oxidation on levels of pyridine nucleotides in liver and yeast.
    RAIHA NC; OURA E
    Proc Soc Exp Biol Med; 1962 Apr; 109():908-10. PubMed ID: 14489924
    [No Abstract]   [Full Text] [Related]  

  • 11. The elimination of ethyl, n-propyl, n-butyl and iso-amyl alcohols by the isolated perfused rat liver.
    Auty RM; Branch RA
    J Pharmacol Exp Ther; 1976 Jun; 197(3):669-74. PubMed ID: 932998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The formation of higher aliphatic alcohols by mutant strains of Saccharomyces cerevisiae.
    INGRAHAM JL; GUYMON JF
    Arch Biochem Biophys; 1960 May; 88():157-66. PubMed ID: 13852846
    [No Abstract]   [Full Text] [Related]  

  • 13. Heavy sulphur compounds, higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must.
    Moreira N; Mendes F; Guedes de Pinho P; Hogg T; Vasconcelos I
    Int J Food Microbiol; 2008 Jun; 124(3):231-8. PubMed ID: 18457893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of the 2-ketobutyrate biosynthetic pathway for 1-propanol production in Saccharomyces cerevisiae.
    Nishimura Y; Matsui T; Ishii J; Kondo A
    Microb Cell Fact; 2018 Mar; 17(1):38. PubMed ID: 29523149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of fermentation-relevant factors: A strategy to reduce ethanol in red wine by sequential culture of native yeasts.
    Maturano YP; Mestre MV; Kuchen B; Toro ME; Mercado LA; Vazquez F; Combina M
    Int J Food Microbiol; 2019 Jan; 289():40-48. PubMed ID: 30196180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas chromatographic assessment of alcoholyzed fatty acids from yeasts: a new chemotaxonomic method.
    Brondz I; Olsen I; Sjöström M
    J Clin Microbiol; 1989 Dec; 27(12):2815-9. PubMed ID: 2687322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The metabolism of ethyl, n-propyl, n-butyl and iso-amyl alcohols by the isolated perfused rat liver.
    Auty RM; Branch RA
    Br J Pharmacol; 1975 Mar; 53(3):443P. PubMed ID: 1137742
    [No Abstract]   [Full Text] [Related]  

  • 18. [RATE OF METABOLIZATION OF DIFFERENT ALCOHOLS IN THE RAT].
    GAILLARD D; DERACHE R
    C R Seances Soc Biol Fil; 1964; 158():1605-8. PubMed ID: 14250591
    [No Abstract]   [Full Text] [Related]  

  • 19. Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine.
    Kim DH; Hong YA; Park HD
    Biotechnol Lett; 2008 Sep; 30(9):1633-8. PubMed ID: 18414791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Autochthonous yeasts isolated in Tenerife wines and their influence on ethyl acetate and higher alcohol concentrations analyzed by gas chromatography].
    Salvadores MP; Díaz ME; Cardell E
    Microbiologia; 1993 Dec; 9(2):107-12. PubMed ID: 8172687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.