These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Kimura F; Kimura T; Tamura M; Hirai A; Ikuno M; Horii F Langmuir; 2005 Mar; 21(5):2034-7. PubMed ID: 15723507 [TBL] [Abstract][Full Text] [Related]
7. The development of chiral nematic mesoporous materials. Kelly JA; Giese M; Shopsowitz KE; Hamad WY; MacLachlan MJ Acc Chem Res; 2014 Apr; 47(4):1088-96. PubMed ID: 24694253 [TBL] [Abstract][Full Text] [Related]
8. Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy. Miller AF; Donald AM Biomacromolecules; 2003; 4(3):510-7. PubMed ID: 12741764 [TBL] [Abstract][Full Text] [Related]
9. Digital color in cellulose nanocrystal films. Dumanli AG; van der Kooij HM; Kamita G; Reisner E; Baumberg JJ; Steiner U; Vignolini S ACS Appl Mater Interfaces; 2014 Aug; 6(15):12302-6. PubMed ID: 25007291 [TBL] [Abstract][Full Text] [Related]
10. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Hirai A; Inui O; Horii F; Tsuji M Langmuir; 2009 Jan; 25(1):497-502. PubMed ID: 19055323 [TBL] [Abstract][Full Text] [Related]
11. Liquid-crystalline assembly of spherical cellulose nanocrystals. Liu B; Cheng L; Yuan Y; Hu J; Zhou L; Zong L; Duan Y; Zhang J Int J Biol Macromol; 2023 Jul; 242(Pt 1):124738. PubMed ID: 37169056 [TBL] [Abstract][Full Text] [Related]
12. Parabolic focal conics in self-assembled solid films of cellulose nanocrystals. Roman M; Gray DG Langmuir; 2005 Jun; 21(12):5555-61. PubMed ID: 15924489 [TBL] [Abstract][Full Text] [Related]
13. In vitro chiral nematic ordering of chitin crystallites. Revol JF; Marchessault RH Int J Biol Macromol; 1993 Dec; 15(6):329-35. PubMed ID: 8110653 [TBL] [Abstract][Full Text] [Related]
15. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Azizi Samir MA; Alloin F; Dufresne A Biomacromolecules; 2005; 6(2):612-26. PubMed ID: 15762621 [TBL] [Abstract][Full Text] [Related]
16. Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals. Elazzouzi-Hafraoui S; Putaux JL; Heux L J Phys Chem B; 2009 Aug; 113(32):11069-75. PubMed ID: 19719262 [TBL] [Abstract][Full Text] [Related]
17. Helicoidal orientation of cellulose microfibrils in Nitella opaca internode cells: ultrastructure and computed theoretical effects of strain reorientation during wall growth. Neville AC; Levy S Planta; 1984 Oct; 162(4):370-84. PubMed ID: 24253172 [TBL] [Abstract][Full Text] [Related]
18. Twisted liquid crystalline supramolecular arrangements in morphogenesis. Giraud-Guille MM Int Rev Cytol; 1996; 166():59-101. PubMed ID: 8881773 [TBL] [Abstract][Full Text] [Related]
19. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Zhang T; Zheng Y; Cosgrove DJ Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644 [TBL] [Abstract][Full Text] [Related]
20. The mechanism of formation of Cellulose-like microfibrils in a cell-free system from Acetobacter xylinum. Colvin JR Planta; 1980 Jul; 149(2):97-107. PubMed ID: 24306238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]