These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 1390699)
1. Forces, bond lengths, and reactivity: fundamental insight into the mechanism of enzyme catalysis. Tonge PJ; Carey PR Biochemistry; 1992 Sep; 31(38):9122-5. PubMed ID: 1390699 [TBL] [Abstract][Full Text] [Related]
2. Length of the acyl carbonyl bond in acyl-serine proteases correlates with reactivity. Tonge PJ; Carey PR Biochemistry; 1990 Dec; 29(48):10723-7. PubMed ID: 2271679 [TBL] [Abstract][Full Text] [Related]
3. Details of the acyl-enzyme intermediate and the oxyanion hole in serine protease catalysis. Whiting AK; Peticolas WL Biochemistry; 1994 Jan; 33(2):552-61. PubMed ID: 8286385 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen-bonding in enzyme catalysis. Fourier-transform infrared detection of ground-state electronic strain in acyl-chymotrypsins and analysis of the kinetic consequences. White AJ; Wharton CW Biochem J; 1990 Sep; 270(3):627-37. PubMed ID: 2241898 [TBL] [Abstract][Full Text] [Related]
5. Alpha-helix dipoles and catalysis: absorption and Raman spectroscopic studies of acyl cysteine proteases. Doran JD; Carey PR Biochemistry; 1996 Sep; 35(38):12495-502. PubMed ID: 8823185 [TBL] [Abstract][Full Text] [Related]
6. Direct observation of the titration of substrate carbonyl groups in the active site of alpha-chymotrypsin by resonance Raman spectroscopy. Tonge PJ; Carey PR Biochemistry; 1989 Aug; 28(16):6701-9. PubMed ID: 2790025 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen-bonding in 2-aminobenzoyl-alpha-chymotrypsin formed by acylation of the enzyme with isatoic anhydride: IR and mass spectroscopic studies. Goodall JJ; Booth VK; Ashcroft AE; Wharton CW Chembiochem; 2002 Jan; 3(1):68-75. PubMed ID: 17590956 [TBL] [Abstract][Full Text] [Related]
8. Effect of specificity on ligand conformation in acyl-chymotrypsins. Johal SS; White AJ; Wharton CW Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):281-7. PubMed ID: 8297332 [TBL] [Abstract][Full Text] [Related]
9. Analysis and elimination of protein perturbation in infrared difference spectra of acyl-chymotrypsin ester carbonyl groups by using 13C isotopic substitution. White AJ; Drabble K; Ward S; Wharton CW Biochem J; 1992 Oct; 287 ( Pt 1)(Pt 1):317-23. PubMed ID: 1417785 [TBL] [Abstract][Full Text] [Related]
10. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation. Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635 [TBL] [Abstract][Full Text] [Related]
12. Probing hydrogen-bonding interactions in the active site of medium-chain acyl-CoA dehydrogenase using Raman spectroscopy. Wu J; Bell AF; Luo L; Stephens AW; Stankovich MT; Tonge PJ Biochemistry; 2003 Oct; 42(40):11846-56. PubMed ID: 14529297 [TBL] [Abstract][Full Text] [Related]
13. Enzyme:substrate hydrogen bond shortening during the acylation phase of serine protease catalysis. Fodor K; Harmat V; Neutze R; Szilágyi L; Gráf L; Katona G Biochemistry; 2006 Feb; 45(7):2114-21. PubMed ID: 16475800 [TBL] [Abstract][Full Text] [Related]
14. Anatomy of a simple acyl intermediate in enzyme catalysis: combined biophysical and modeling studies on ornithine acetyl transferase. Iqbal A; Clifton IJ; Bagonis M; Kershaw NJ; Domene C; Claridge TD; Wharton CW; Schofield CJ J Am Chem Soc; 2009 Jan; 131(2):749-57. PubMed ID: 19105697 [TBL] [Abstract][Full Text] [Related]
15. Raman study of the polarizing forces promoting catalysis in 4-chlorobenzoate-CoA dehalogenase. Clarkson J; Tonge PJ; Taylor KL; Dunaway-Mariano D; Carey PR Biochemistry; 1997 Aug; 36(33):10192-9. PubMed ID: 9254617 [TBL] [Abstract][Full Text] [Related]
16. Active site properties of the 3C proteinase from hepatitis A virus (a hybrid cysteine/serine protease) probed by Raman spectroscopy. Dinakarpandian D; Shenoy B; Pusztai-Carey M; Malcolm BA; Carey PR Biochemistry; 1997 Apr; 36(16):4943-8. PubMed ID: 9125516 [TBL] [Abstract][Full Text] [Related]
17. Electric fields in active sites: substrate switching from null to strong fields in thiol- and selenol-subtilisins. Dinakarpandian D; Shenoy BC; Hilvert D; McRee DE; McTigue M; Carey PR Biochemistry; 1999 May; 38(20):6659-67. PubMed ID: 10350485 [TBL] [Abstract][Full Text] [Related]
18. Active site dynamics of acyl-chymotrypsin. Nakagawa S; Yu HA; Karplus M; Umeyama H Proteins; 1993 Jun; 16(2):172-94. PubMed ID: 8332606 [TBL] [Abstract][Full Text] [Related]
19. Covalent bond changes as a driving force in enzyme catalysis. Huang Y; Bolen DW Biochemistry; 1993 Sep; 32(36):9329-39. PubMed ID: 8369303 [TBL] [Abstract][Full Text] [Related]
20. Influence of modulated structural dynamics on the kinetics of alpha-chymotrypsin catalysis. Insights through chemical glycosylation, molecular dynamics and domain motion analysis. Solá RJ; Griebenow K FEBS J; 2006 Dec; 273(23):5303-19. PubMed ID: 17076704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]