These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 1390708)
1. Dissection of the functional role of structural elements of tyrosine-63 in the catalytic action of human lysozyme. Muraki M; Harata K; Jigami Y Biochemistry; 1992 Sep; 31(38):9212-9. PubMed ID: 1390708 [TBL] [Abstract][Full Text] [Related]
2. The importance of precise positioning of negatively charged carboxylate in the catalytic action of human lysozyme. Muraki M; Harata K; Hayashi Y; Machida M; Jigami Y Biochim Biophys Acta; 1991 Aug; 1079(2):229-37. PubMed ID: 1911846 [TBL] [Abstract][Full Text] [Related]
3. Dissection of protein-carbohydrate interactions in mutant hen egg-white lysozyme complexes and their hydrolytic activity. Maenaka K; Matsushima M; Song H; Sunada F; Watanabe K; Kumagai I J Mol Biol; 1995 Mar; 247(2):281-93. PubMed ID: 7707375 [TBL] [Abstract][Full Text] [Related]
4. Protein-carbohydrate interactions in human lysozyme probed by combining site-directed mutagenesis and affinity labeling. Muraki M; Harata K; Sugita N; Sato KI Biochemistry; 2000 Jan; 39(2):292-9. PubMed ID: 10630988 [TBL] [Abstract][Full Text] [Related]
5. Origin of carbohydrate recognition specificity of human lysozyme revealed by affinity labeling. Muraki M; Harata K; Sugita N; Sato K Biochemistry; 1996 Oct; 35(42):13562-7. PubMed ID: 8885835 [TBL] [Abstract][Full Text] [Related]
6. Functional and structural effects of mutagenic replacement of Asn37 at subsite F on the lysozyme-catalyzed reaction. Kawamura S; Eto M; Imoto T; Ikemizu S; Araki T; Torikata T Biosci Biotechnol Biochem; 2004 Mar; 68(3):593-601. PubMed ID: 15056892 [TBL] [Abstract][Full Text] [Related]
7. Amino acid residues in subsites e and f responsible for the characteristic enzymatic activity of duck egg-white lysozyme. Kawamura S; Toshima G; Imoto T; Araki T; Torikata T J Biochem; 2002 May; 131(5):663-70. PubMed ID: 11983072 [TBL] [Abstract][Full Text] [Related]
8. Left-sided substrate binding of lysozyme: evidence for the involvement of asparagine-46 in the initial binding of substrate to chicken lysozyme. Inoue M; Yamada H; Yasukochi T; Miki T; Horiuchi T; Imoto T Biochemistry; 1992 Oct; 31(42):10322-30. PubMed ID: 1420152 [TBL] [Abstract][Full Text] [Related]
9. The mutational effect of Ile58 at subsite C in hen egg-white lysozyme on substrate binding, enzymatic activity, and protein stability. Kawamura S; Chijiiwa Y; Torikata T; Araki T Biosci Biotechnol Biochem; 2013; 77(3):560-5. PubMed ID: 23470762 [TBL] [Abstract][Full Text] [Related]
10. X-ray structure of human lysozyme labelled with 2',3'-epoxypropyl beta-glycoside of man-beta1,4-GlcNAc. Structural change and recognition specificity at subsite B. Muraki M; Harata K; Sugita N; Sato Ki Acta Crystallogr D Biol Crystallogr; 1998 Sep; 54(Pt 5):834-43. PubMed ID: 9757098 [TBL] [Abstract][Full Text] [Related]
11. Importance of van der Waals contact between Glu 35 and Trp 109 to the catalytic action of human lysozyme. Muraki M; Goda S; Nagahora H; Harata K Protein Sci; 1997 Feb; 6(2):473-6. PubMed ID: 9041653 [TBL] [Abstract][Full Text] [Related]
12. Phospholipase A2 engineering. Structural and functional roles of highly conserved active site residues tyrosine-52 and tyrosine-73. Dupureur CM; Yu BZ; Jain MK; Noel JP; Deng T; Li Y; Byeon IJ; Tsai MD Biochemistry; 1992 Jul; 31(28):6402-13. PubMed ID: 1633153 [TBL] [Abstract][Full Text] [Related]
13. The functional importance of hydrophobicity of the tyrosine at position 13 of human epidermal growth factor in receptor binding. Tadaki DK; Niyogi SK J Biol Chem; 1993 May; 268(14):10114-9. PubMed ID: 8486681 [TBL] [Abstract][Full Text] [Related]
14. Roles of surface hydrophobic residues in the interfacial catalysis of bovine pancreatic phospholipase A2. Lee BI; Yoon ET; Cho W Biochemistry; 1996 Apr; 35(13):4231-40. PubMed ID: 8672459 [TBL] [Abstract][Full Text] [Related]
15. The roles of conserved aromatic amino-acid residues in the active site of human lysozyme: a site-specific mutagenesis study. Muraki M; Morikawa M; Jigami Y; Tanaka H Biochim Biophys Acta; 1987 Nov; 916(1):66-75. PubMed ID: 3663686 [TBL] [Abstract][Full Text] [Related]
16. Single amino acid substitution in Bacillus sphaericus phenylalanine dehydrogenase dramatically increases its discrimination between phenylalanine and tyrosine substrates. Seah SY; Britton KL; Rice DW; Asano Y; Engel PC Biochemistry; 2002 Sep; 41(38):11390-7. PubMed ID: 12234181 [TBL] [Abstract][Full Text] [Related]
17. Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala-->Ser and Val-->Thr substitutions in T4 lysozyme. Blaber M; Lindstrom JD; Gassner N; Xu J; Heinz DW; Matthews BW Biochemistry; 1993 Oct; 32(42):11363-73. PubMed ID: 8218201 [TBL] [Abstract][Full Text] [Related]
18. Experimental verification of the crucial roles of Glu73 in the catalytic activity and structural stability of goose type lysozyme. Kawamura S; Ohno K; Ohkuma M; Chijiiwa Y; Torikata T J Biochem; 2006 Jul; 140(1):75-85. PubMed ID: 16877771 [TBL] [Abstract][Full Text] [Related]
19. Mutagenesis at a highly conserved tyrosine in monoamine oxidase B affects FAD incorporation and catalytic activity. Zhou BP; Lewis DA; Kwan SW; Kirksey TJ; Abell CW Biochemistry; 1995 Jul; 34(29):9526-31. PubMed ID: 7626622 [TBL] [Abstract][Full Text] [Related]
20. Contribution to activity of histidine-aromatic, amide-aromatic, and aromatic-aromatic interactions in the extended catalytic site of cysteine proteinases. Brömme D; Bonneau PR; Purisima E; Lachance P; Hajnik S; Thomas DY; Storer AC Biochemistry; 1996 Apr; 35(13):3970-9. PubMed ID: 8672429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]