BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 1390713)

  • 1. Kinetics and thermodynamics of triple-helix formation: effects of ionic strength and mismatches.
    Rougée M; Faucon B; Mergny JL; Barcelo F; Giovannangeli C; Garestier T; Hélène C
    Biochemistry; 1992 Sep; 31(38):9269-78. PubMed ID: 1390713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of triple-helix formation by pyrimidine oligodeoxynucleotides and duplex DNA.
    Xodo LE
    Eur J Biochem; 1995 Mar; 228(3):918-26. PubMed ID: 7737194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The activation volume of a DNA helix-coil transition.
    Lin MC; Macgregor RB
    Biochemistry; 1996 Sep; 35(36):11846-51. PubMed ID: 8794767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of triple helix formation: spectrophotometric studies on the d(A)10.2d(T)10 and d(C+3T4C+3).d(G3A4G3).d(C3T4C3) triple helices.
    Pilch DS; Brousseau R; Shafer RH
    Nucleic Acids Res; 1990 Oct; 18(19):5743-50. PubMed ID: 2216768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic study of triple-helix formation at a critical R x Y sequence of the murine c-Ki-ras promoter by (A,G)- and (G,T) oligonucleotides.
    Xodo LE; Pirulli D; Quadrifoglio F
    Eur J Biochem; 1997 Sep; 248(2):424-32. PubMed ID: 9346298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fidelity of binding of the guanidinium nucleic acid (DNG) d(Tg)4-T-azido with short strand DNA oligomers (A5G3A5, GA4G3A4G, G2A3G3A3G2, G2A2G5A2G2). A kinetic and thermodynamic study.
    Blaskó A; Minyat EE; Dempcy RO; Bruice TC
    Biochemistry; 1997 Jun; 36(25):7821-31. PubMed ID: 9201925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA triplex formation of oligonucleotide analogues consisting of linker groups and octamer segments that have opposite sugar-phosphate backbone polarities.
    Ono A; Chen CN; Kan LS
    Biochemistry; 1991 Oct; 30(41):9914-2. PubMed ID: 1911783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular dichroism and UV melting studies on formation of an intramolecular triplex containing parallel T*A:T and G*G:C triplets: netropsin complexation with the triplex.
    Gondeau C; Maurizot JC; Durand M
    Nucleic Acids Res; 1998 Nov; 26(21):4996-5003. PubMed ID: 9776765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triple-helix formation by an oligonucleotide containing one (dA)12 and two (dT)12 sequences bridged by two hexaethylene glycol chains.
    Durand M; Peloille S; Thuong NT; Maurizot JC
    Biochemistry; 1992 Sep; 31(38):9197-204. PubMed ID: 1390706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic investigation of an intramolecular DNA triplex containing both G.G:C and T.A:T triads and its complex with netropsin.
    Gondeau C; Maurizot JC; Durand M
    J Biomol Struct Dyn; 1998 Jun; 15(6):1133-45. PubMed ID: 9669558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of single base-pair mismatches on the duplex stability of d(T-A-T-T-A-A-T-A-T-C-A-A-G-T-T-G) . d(C-A-A-C-T-T-G-A-T-A-T-T-A-A-T-A).
    Tibanyenda N; De Bruin SH; Haasnoot CA; van der Marel GA; van Boom JH; Hilbers CW
    Eur J Biochem; 1984 Feb; 139(1):19-27. PubMed ID: 6698006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric interactions between DNA strands and monovalent cations in DNA quadruplex assembly: thermodynamic evidence for three linked association pathways.
    Hardin CC; Corregan MJ; Lieberman DV; Brown BA
    Biochemistry; 1997 Dec; 36(49):15428-50. PubMed ID: 9398273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A directional nucleation-zipping mechanism for triple helix formation.
    Alberti P; Arimondo PB; Mergny JL; Garestier T; Hélène C; Sun JS
    Nucleic Acids Res; 2002 Dec; 30(24):5407-15. PubMed ID: 12490709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triple-helix formation of DNA oligomers with methylthiourea-linked nucleosides (DNmt): a kinetic and thermodynamic analysis.
    Arya DP; Bruice TC
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4384-9. PubMed ID: 10200271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the DNA triplex formed by d(TGGGTGGGTGGTTGGGTGGG) and a critical R.Y sequence located in the promoter of the murine Ki-ras proto-oncogene.
    Xodo LE
    FEBS Lett; 1995 Aug; 370(1-2):153-7. PubMed ID: 7649296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation volume of DNA duplex formation.
    Lin MC; Macgregor RB
    Biochemistry; 1997 May; 36(21):6539-44. PubMed ID: 9174371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of DNA dumbbells. III. Theoretical analysis of optical melting curves of dumbbells with a 16 base-pair duplex stem and Tn end loops (n = 2, 3, 4, 6, 8, 10, 14).
    Paner TM; Amaratunga M; Benight AS
    Biopolymers; 1992 Jul; 32(7):881-92. PubMed ID: 1391636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calorimetric unfolding of intramolecular triplexes: length dependence and incorporation of single AT --> TA substitutions in the duplex domain.
    Shikiya R; Marky LA
    J Phys Chem B; 2005 Sep; 109(38):18177-83. PubMed ID: 16853334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.
    Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.