BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1390724)

  • 1. N-terminal domain of Avena phytochrome: interactions with sodium dodecyl sulfate micelles and N-terminal chain truncated phytochrome.
    Parker W; Partis M; Song PS
    Biochemistry; 1992 Oct; 31(39):9413-20. PubMed ID: 1390724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromophore topography and secondary structure of 124-kilodalton Avena phytochrome probed by Zn2(+)-induced chromophore modification.
    Sommer D; Song PS
    Biochemistry; 1990 Feb; 29(7):1943-8. PubMed ID: 2184893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure function studies on phytochrome. Identification of light-induced conformational changes in 124-kDa Avena phytochrome in vitro.
    Lagarias JC; Mercurio FM
    J Biol Chem; 1985 Feb; 260(4):2415-23. PubMed ID: 3882693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of expression system on chromophore binding and preservation of spectral properties in recombinant phytochrome A.
    Gärtner W; Hill C; Worm K; Braslavsky SE; Schaffner K
    Eur J Biochem; 1996 Mar; 236(3):978-83. PubMed ID: 8665921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein kinase A-catalyzed phosphorylation and its effect on conformation in phytochrome A.
    Lapko VN; Wells TA; Song PS
    Biochemistry; 1996 May; 35(21):6585-94. PubMed ID: 8639606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of surface-exposed parts of red-light- and far-red-light-absorbing forms of native pea phytochrome by limited proteolysis.
    Nakazawa M; Hayashi H; Yoshida Y; Manabe K
    Plant Cell Physiol; 1993 Jan; 34(1):83-91. PubMed ID: 8025822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling of phytochrome using constitutive C-phycocyanin from Fremyella diplosiphon as a putative structural template.
    Parker W; Goebel P; Ross CR; Song PS; Stezowski JJ
    Bioconjug Chem; 1994; 5(1):21-30. PubMed ID: 8199230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface topography of phytochrome A deduced from specific chemical modification with iodoacetamide.
    Lapko VN; Jiang XY; Smith DL; Song PS
    Biochemistry; 1998 Sep; 37(36):12526-35. PubMed ID: 9730825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromophore incorporation, Pr to Pfr kinetics, and Pfr thermal reversion of recombinant N-terminal fragments of phytochrome A and B chromoproteins.
    Remberg A; Ruddat A; Braslavsky SE; Gärtner W; Schaffner K
    Biochemistry; 1998 Jul; 37(28):9983-90. PubMed ID: 9665703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity.
    Cherry JR; Hondred D; Walker JM; Keller JM; Hershey HP; Vierstra RD
    Plant Cell; 1993 May; 5(5):565-75. PubMed ID: 8518556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of phytochrome apoprotein from Avena sativa in Escherichia coli and formation of photoactive chromoproteins by assembly with phycocyanobilin.
    Hill C; Gärtner W; Towner P; Braslavsky SE; Schaffner K
    Eur J Biochem; 1994 Jul; 223(1):69-77. PubMed ID: 8033910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The system of phytochromes: photobiophysics and photobiochemistry in vivo.
    Sineshchekov VA
    Membr Cell Biol; 1998; 12(5):691-720. PubMed ID: 10379648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of regions within the N-terminal 6-kilodalton domain of phytochrome A that modulate its biological activity.
    Jordan ET; Marita JM; Clough RC; Vierstra RD
    Plant Physiol; 1997 Oct; 115(2):693-704. PubMed ID: 9342873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FTIR studies of phytochrome photoreactions reveal the C=O bands of the chromophore: consequences for its protonation states, conformation, and protein interaction.
    Foerstendorf H; Benda C; Gärtner W; Storf M; Scheer H; Siebert F
    Biochemistry; 2001 Dec; 40(49):14952-9. PubMed ID: 11732915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A photoreversible circular dichroism spectral change in oat phytochrome is suppressed by a monoclonal antibody that binds near its N-terminus and by chromophore modification.
    Chai YG; Song PS; Cordonnier MM; Pratt LH
    Biochemistry; 1987 Aug; 26(16):4947-52. PubMed ID: 3663636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-induced conformational changes of cyanobacterial phytochrome Cph1 probed by limited proteolysis and autophosphorylation.
    Esteban B; Carrascal M; Abian J; Lamparter T
    Biochemistry; 2005 Jan; 44(2):450-61. PubMed ID: 15641769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral perturbations and oligomer/monomer formation in 124-kilodalton Avena phytochrome.
    Choi JK; Kim IS; Kwon TI; Parker W; Song PS
    Biochemistry; 1990 Jul; 29(29):6883-91. PubMed ID: 2204422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequences within both the N- and C-terminal domains of phytochrome A are required for PFR ubiquitination and degradation.
    Clough RC; Jordan-Beebe ET; Lohman KN; Marita JM; Walker JM; Gatz C; Vierstra RD
    Plant J; 1999 Jan; 17(2):155-67. PubMed ID: 10074713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of mutations in the chromophore pocket of recombinant phytochrome on chromoprotein assembly and Pr-to-Pfr photoconversion.
    Remberg A; Schmidt P; Braslavsky SE; Gärtner W; Schaffner K
    Eur J Biochem; 1999 Nov; 266(1):201-8. PubMed ID: 10542065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both subunits of the dimeric plant photoreceptor phytochrome require chromophore for stability of the far-red light-absorbing form.
    Hennig L; Schäfer E
    J Biol Chem; 2001 Mar; 276(11):7913-8. PubMed ID: 11106666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.