BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1390724)

  • 21. Phototransformation of pea phytochrome A induces an increase in alpha-helical folding of the apoprotein: comparison with a monocot phytochrome A and CD analysis by different methods.
    Deforce L; Tokutomi S; Song PS
    Biochemistry; 1994 Apr; 33(16):4918-22. PubMed ID: 8161552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytochrome assembly. Defining chromophore structural requirements for covalent attachment and photoreversibility.
    Li L; Lagarias JC
    J Biol Chem; 1992 Sep; 267(27):19204-10. PubMed ID: 1527043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphorylation of Avena phytochrome in vitro as a probe of light-induced conformational changes.
    Wong YS; Cheng HC; Walsh DA; Lagarias JC
    J Biol Chem; 1986 Sep; 261(26):12089-97. PubMed ID: 3745179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The molecular topography of phytochrome: chromophore and apoprotein.
    Song PS
    J Photochem Photobiol B; 1988 Jul; 2(1):43-57. PubMed ID: 3149301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional analysis of a 450-amino acid N-terminal fragment of phytochrome B in Arabidopsis.
    Oka Y; Matsushita T; Mochizuki N; Suzuki T; Tokutomi S; Nagatani A
    Plant Cell; 2004 Aug; 16(8):2104-16. PubMed ID: 15273294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phytochrome structure: Peptide fragments from the amino-terminal domain involved in protein-chromophore interactions.
    Jones AM; Quail PH
    Planta; 1989 May; 178(2):147-56. PubMed ID: 24212743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A monoclonal antibody specific for the red-absorbing form of phytochrome.
    Holdsworth ML; Whitelam GC
    Planta; 1987 Dec; 172(4):539-47. PubMed ID: 24226075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ubiquitin-phytochrome conjugates. Pool dynamics during in vivo phytochrome degradation.
    Jabben M; Shanklin J; Vierstra RD
    J Biol Chem; 1989 Mar; 264(9):4998-5005. PubMed ID: 2538468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-resolved thermodynamic analysis of the oat phytochrome A phototransformation. A photothermal beam deflection study.
    Michler I; Braslavsky SE
    Photochem Photobiol; 2001 Oct; 74(4):624-35. PubMed ID: 11683044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and spectroscopic properties of 124-kDa oat phytochrome.
    Chai YG; Singh BR; Song PS; Lee J; Robinson GW
    Anal Biochem; 1987 Jun; 163(2):322-30. PubMed ID: 3661984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protonation state and structural changes of the tetrapyrrole chromophore during the Pr --> Pfr phototransformation of phytochrome: a resonance Raman spectroscopic study.
    Kneip C; Hildebrandt P; Schlamann W; Braslavsky SE; Mark F; Schaffner K
    Biochemistry; 1999 Nov; 38(46):15185-92. PubMed ID: 10563801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The serine-rich N-terminal domain of oat phytochrome a helps regulate light responses and subnuclear localization of the photoreceptor.
    Casal JJ; Davis SJ; Kirchenbauer D; Viczian A; Yanovsky MJ; Clough RC; Kircher S; Jordan-Beebe ET; Schäfer E; Nagy F; Vierstra RD
    Plant Physiol; 2002 Jul; 129(3):1127-37. PubMed ID: 12114567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the collective nature of phytochrome photoactivation.
    Song C; Psakis G; Lang C; Mailliet J; Zaanen J; Gärtner W; Hughes J; Matysik J
    Biochemistry; 2011 Dec; 50(51):10987-9. PubMed ID: 22124256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential exposure of aromatic amino acids in the red-light-absorbing and far-red-light-absorbing forms of 124-kDa oat phytochrome.
    Singh BR; Song PS; Eilfeld P; Rüdiger W
    Eur J Biochem; 1989 Oct; 184(3):715-21. PubMed ID: 2806252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of native oat phytochrome photoreversion: a time-resolved absorption investigation.
    Chen E; Lapko VN; Lewis JW; Song PS; Kliger DS
    Biochemistry; 1996 Jan; 35(3):843-50. PubMed ID: 8547264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of separate molecular domains in the structure of phytochrome from etiolated Avena sativa L.
    Jones AM; Vierstra RD; Daniels SM; Quail P
    Planta; 1985 Jul; 164(4):501-6. PubMed ID: 24248223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions between native oat phytochrome and tetrapyrroles.
    Singh BR; Song PS
    Biochim Biophys Acta; 1989 Jun; 996(1-2):62-9. PubMed ID: 2736260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytochrome three-dimensional structures and functions.
    Hughes J
    Biochem Soc Trans; 2010 Apr; 38(2):710-6. PubMed ID: 20298248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome.
    Wagner JR; Brunzelle JS; Forest KT; Vierstra RD
    Nature; 2005 Nov; 438(7066):325-31. PubMed ID: 16292304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromophore structure in the photocycle of the cyanobacterial phytochrome Cph1.
    van Thor JJ; Mackeen M; Kuprov I; Dwek RA; Wormald MR
    Biophys J; 2006 Sep; 91(5):1811-22. PubMed ID: 16751241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.