BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 1390724)

  • 41. Large-scale generation of affinity-purified recombinant phytochrome chromopeptide.
    Mozley D; Remberg A; Gärtner W
    Photochem Photobiol; 1997 Nov; 66(5):710-5. PubMed ID: 9383995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dominant negative suppression of arabidopsis photoresponses by mutant phytochrome A sequences identifies spatially discrete regulatory domains in the photoreceptor.
    Boylan M; Douglas N; Quail PH
    Plant Cell; 1994 Mar; 6(3):449-60. PubMed ID: 8180501
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conformation of human serum apolipoprotein A-I(166-185) in the presence of sodium dodecyl sulfate or dodecylphosphocholine by 1H-NMR and CD. Evidence for specific peptide-SDS interactions.
    Wang G; Treleaven WD; Cushley RJ
    Biochim Biophys Acta; 1996 Jun; 1301(3):174-84. PubMed ID: 8664326
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins.
    Lamparter T; Michael N
    Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The distance between the phytochrome chromophore and the N-terminal chain decreases during phototransformation. A novel fluorescence energy transfer method using labeled antibody fragments.
    Farrens DL; Cordonnier MM; Pratt LH; Song PS
    Photochem Photobiol; 1992 Nov; 56(5):725-33. PubMed ID: 1475320
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Resonance Raman spectroscopic study of the tryptic 39-kDa fragment of phytochrome.
    Kneip C; Schlamann W; Braslavsky SE; Hildebrandt P; Schaffner K
    FEBS Lett; 2000 Oct; 482(3):252-6. PubMed ID: 11024470
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solution structure of the N-terminal amphitropic domain of Escherichia coli glucose-specific enzyme IIA in membrane-mimetic micelles.
    Wang G; Keifer PA; Peterkofsky A
    Protein Sci; 2003 May; 12(5):1087-96. PubMed ID: 12717030
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer.
    Ryu JS; Kim JI; Kunkel T; Kim BC; Cho DS; Hong SH; Kim SH; Fernández AP; Kim Y; Alonso JM; Ecker JR; Nagy F; Lim PO; Song PS; Schäfer E; Nam HG
    Cell; 2005 Feb; 120(3):395-406. PubMed ID: 15707897
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Resonance Raman analysis of the Pr and Pfr forms of phytochrome.
    Fodor SP; Lagarias JC; Mathies RA
    Biochemistry; 1990 Dec; 29(50):11141-6. PubMed ID: 2271702
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatial structure of (34-65)bacterioopsin polypeptide in SDS micelles determined from nuclear magnetic resonance data.
    Lomize AL; Pervushin KV; Arseniev AS
    J Biomol NMR; 1992 Jul; 2(4):361-72. PubMed ID: 1511236
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spectral Characterization and Proteolytic Mapping of Native 120-Kilodalton Phytochrome from Cucurbita pepo L.
    Vierstra RD; Quail PH
    Plant Physiol; 1985 Apr; 77(4):990-8. PubMed ID: 16664177
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phytochrome and the regulation of the expression of its genes.
    Quail PH; Colbert JT; Peters NK; Christensen AH; Sharrock RA; Lissemore JL
    Philos Trans R Soc Lond B Biol Sci; 1986 Nov; 314(1166):469-80. PubMed ID: 2879299
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Light-dependent dimerisation in the N-terminal sensory module of cyanobacterial phytochrome 1.
    Strauss HM; Schmieder P; Hughes J
    FEBS Lett; 2005 Jul; 579(18):3970-4. PubMed ID: 16004995
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physicochemical differences between the red- and the far-red-absorbing forms of phytochrome.
    Hunt RE; Pratt LH
    Biochemistry; 1981 Feb; 20(4):941-5. PubMed ID: 7213624
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resonance Raman study on intact pea phytochrome and its model compounds: evidence for proton migration during the phototransformation.
    Mizutani Y; Tokutomi S; Aoyagi K; Horitsu K; Kitagawa T
    Biochemistry; 1991 Nov; 30(44):10693-700. PubMed ID: 1657153
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Resonance raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome.
    Andel F; Lagarias JC; Mathies RA
    Biochemistry; 1996 Dec; 35(50):15997-6008. PubMed ID: 8973170
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3.
    Zhu Y; Tepperman JM; Fairchild CD; Quail PH
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13419-24. PubMed ID: 11069292
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrophobic properties of phytochrome as probed by 8-anilinonaphthalene-1-sulfonate fluorescence.
    Hahn TR; Song PS
    Biochemistry; 1981 Apr; 20(9):2602-9. PubMed ID: 7236624
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The nuclear localization signal and the C-terminal region of FHY1 are required for transmission of phytochrome A signals.
    Zeidler M; Zhou Q; Sarda X; Yau CP; Chua NH
    Plant J; 2004 Nov; 40(3):355-65. PubMed ID: 15469493
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Binding of phytochrome to liposomes and protoplasts.
    Kim IS; Song PS
    Biochemistry; 1981 Sep; 20(19):5482-9. PubMed ID: 7295687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.