These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 1390830)
1. Testing models for transport systems dependent on periplasmic binding proteins. Krupka RM Biochim Biophys Acta; 1992 Sep; 1110(1):11-9. PubMed ID: 1390830 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of transport systems dependent on periplasmic binding proteins. Krupka RM Biochim Biophys Acta; 1992 Sep; 1110(1):1-10. PubMed ID: 1390828 [TBL] [Abstract][Full Text] [Related]
3. Periplasmic binding protein-dependent transport systems: the membrane-associated components. Higgins CF; Gallagher MP; Hyde SC; Mimmack ML; Pearce SR Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):353-64; discussion 364-5. PubMed ID: 1970642 [TBL] [Abstract][Full Text] [Related]
4. Mathematical treatment of the kinetics of binding protein dependent transport systems reveals that both the substrate loaded and unloaded binding proteins interact with the membrane components. Bohl E; Shuman HA; Boos W J Theor Biol; 1995 Jan; 172(1):83-94. PubMed ID: 7891451 [TBL] [Abstract][Full Text] [Related]
5. The relationship between substrate dissociation constants derived from transport experiments and from equilibrium binding assays. Implications of the conventional carrier model. Devés R; Krupka RM Biochim Biophys Acta; 1984 Jan; 769(2):455-60. PubMed ID: 6696893 [TBL] [Abstract][Full Text] [Related]
6. Testing and characterizing enzymes and membrane-bound carrier proteins acting on amphipathic ligands in the presence of bilayer membrane material and soluble binding protein. Application to the uptake of oleate into isolated cells. Heirwegh KP; Meuwissen JA Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):353-61. PubMed ID: 1599418 [TBL] [Abstract][Full Text] [Related]
7. Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB. Rohrbach MR; Braun V; Köster W J Bacteriol; 1995 Dec; 177(24):7186-93. PubMed ID: 8522527 [TBL] [Abstract][Full Text] [Related]
8. A kinetic model for binding protein-mediated arabinose transport. Kehres DG Protein Sci; 1992 Dec; 1(12):1661-5. PubMed ID: 1304896 [TBL] [Abstract][Full Text] [Related]
9. Aspects of maltose transport in Escherichia coli: established facts and educated guesses. Boos W Ann Microbiol (Paris); 1982 Jan; 133A(1):145-51. PubMed ID: 7041737 [TBL] [Abstract][Full Text] [Related]
10. Galactose transport in human erythrocytes. The transport mechanism is resolved into two simple asymmetric antiparallel carriers. Ginsburg H Biochim Biophys Acta; 1978 Jan; 506(1):119-35. PubMed ID: 620020 [TBL] [Abstract][Full Text] [Related]
11. Role of substrate binding forces in exchange-only transport systems: I. Transition-state theory. Krupka RM J Membr Biol; 1989 Jul; 109(2):151-8. PubMed ID: 2769738 [TBL] [Abstract][Full Text] [Related]
12. Generalized kinetic analysis of ion-driven cotransport systems: II. Random ligand binding as a simple explanation for non-michaelian kinetics. Sanders D J Membr Biol; 1986; 90(1):67-87. PubMed ID: 2422385 [TBL] [Abstract][Full Text] [Related]
13. The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. Kelly DJ; Thomas GH FEMS Microbiol Rev; 2001 Aug; 25(4):405-24. PubMed ID: 11524131 [TBL] [Abstract][Full Text] [Related]
14. Reaction mechanism of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria. Dierks T; Riemer E; Krämer R Biochim Biophys Acta; 1988 Aug; 943(2):231-44. PubMed ID: 2900025 [TBL] [Abstract][Full Text] [Related]
15. In vivo synthesis of the periplasmic domain of TonB inhibits transport through the FecA and FhuA iron siderophore transporters of Escherichia coli. Howard SP; Herrmann C; Stratilo CW; Braun V J Bacteriol; 2001 Oct; 183(20):5885-95. PubMed ID: 11566987 [TBL] [Abstract][Full Text] [Related]
16. Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases. Ames GF; Mimura CS; Shyamala V FEMS Microbiol Rev; 1990 Aug; 6(4):429-46. PubMed ID: 2147378 [TBL] [Abstract][Full Text] [Related]
17. Interpretation of current-voltage relationships for "active" ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms. Hansen UP; Gradmann D; Sanders D; Slayman CL J Membr Biol; 1981; 63(3):165-90. PubMed ID: 7310856 [TBL] [Abstract][Full Text] [Related]
18. A proton nuclear magnetic resonance investigation of histidine-binding protein J of Salmonella typhimurium: a model for transport of L-histidine across cytoplasmic membrane. Ho C; Giza Y; Takahashi S; Ugen KE; Cottam PF; Dowd SR J Supramol Struct; 1980; 13(2):131-45. PubMed ID: 7017276 [TBL] [Abstract][Full Text] [Related]
19. The inhibition of maltose transport by the unliganded form of the maltose-binding protein of Escherichia coli: experimental findings and mathematical treatment. Merino G; Boos W; Shuman HA; Bohl E J Theor Biol; 1995 Nov; 177(2):171-9. PubMed ID: 8558904 [TBL] [Abstract][Full Text] [Related]
20. GAT1 (GABA:Na+:Cl-) cotransport function. Database reconstruction with an alternating access model. Hilgemann DW; Lu CC J Gen Physiol; 1999 Sep; 114(3):459-75. PubMed ID: 10469735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]