BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1390925)

  • 1. Mechanism of ligand-protein interaction in plant seed thiamin-binding proteins. Probing the binding site of protein isolated from buckwheat seeds with a series of thiamin-related compounds.
    RapaƂa-Kozik M; Kozik A
    Biochim Biophys Acta; 1992 Sep; 1159(2):209-14. PubMed ID: 1390925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand-protein interaction in plant seed thiamine-binding proteins. Binding of various thiamine analogues to the sepharose-immobilized buckwheat-seed protein.
    Rapala-Kozik M; Chernikevich IP; Kozik A
    J Protein Chem; 1999 Aug; 18(6):721-8. PubMed ID: 10609649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiamin-binding protein from sunflower seeds.
    Watanabe K; Chikushi K; Adachi T; Shimizu M; Yoshida T; Mitsunaga T
    J Nutr Sci Vitaminol (Tokyo); 1998 Oct; 44(5):665-72. PubMed ID: 9919486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of thiamin-binding protein from buckwheat seeds.
    Watanabe K; Shimizu M; Adachi T; Yoshida T; Mitsunaga T
    J Nutr Sci Vitaminol (Tokyo); 1998 Apr; 44(2):323-8. PubMed ID: 9675712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polypeptide components of oligomeric legumin-like thiamin-binding protein from buckwheat seeds characterized by partial amino acid sequencing and photoaffinity labeling.
    Rapala-Kozik M; Ostrowska K; Bednarczyk K; Dulinski R; Kozik A
    J Protein Chem; 2003 Feb; 22(2):167-75. PubMed ID: 12760421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of ligand-protein interaction in plant seed thiamine-binding proteins. Preliminary chemical identification of amino acid residues essential for thiamine binding to the buckwheat-seed protein.
    Rapala-Kozik M; Kozik A
    Biochimie; 1996; 78(2):77-84. PubMed ID: 8818213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation and degradation of thiamin-binding protein and level of thiamin in wheat seeds during seed maturation and germination.
    Watanabe K; Nishida N; Adachi T; Ueda M; Mitsunaga T; Kawamura Y
    Biosci Biotechnol Biochem; 2004 Jun; 68(6):1243-8. PubMed ID: 15215587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization of ThiT from Lactococcus lactis: a thiamin transporter with picomolar substrate binding affinity.
    Erkens GB; Slotboom DJ
    Biochemistry; 2010 Apr; 49(14):3203-12. PubMed ID: 20218726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature of the thiamin-binding protein from chicken egg yolk.
    Muniyappa K; Adiga PR
    Biochem J; 1981 Mar; 193(3):679-85. PubMed ID: 7197919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible functional roles of carboxyl and histidine residues in a soluble thiamine-binding protein of Saccharomyces cerevisiae.
    Nishimura H; Sempuku K; Iwashima A
    Biochim Biophys Acta; 1981 May; 668(3):333-8. PubMed ID: 7016195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in the development of functional foods from buckwheat.
    Li SQ; Zhang QH
    Crit Rev Food Sci Nutr; 2001 Sep; 41(6):451-64. PubMed ID: 11592684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of thiamin-binding protein from chicken egg white.
    Muniyappa K; Adiga PR
    Biochem J; 1979 Mar; 177(3):887-94. PubMed ID: 109083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation of complexes of thiamin pyrophosphate with divalent cations as studied by nuclear magnetic resonance spectroscopy.
    Gallo AA; Sable HZ
    J Biol Chem; 1975 Jul; 250(13):4986-91. PubMed ID: 1150651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis.
    Mkrtchyan G; Aleshin V; Parkhomenko Y; Kaehne T; Di Salvo ML; Parroni A; Contestabile R; Vovk A; Bettendorff L; Bunik V
    Sci Rep; 2015 Jul; 5():12583. PubMed ID: 26212886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High affinity of acid phosphatase encoded by PHO3 gene in Saccharomyces cerevisiae for thiamin phosphates.
    Nosaka K
    Biochim Biophys Acta; 1990 Feb; 1037(2):147-54. PubMed ID: 2407294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An X-ray evidence for the ring-stacking interaction between indole ring ad the pyrimidine moiety of thiamin: crystal structure of thiamin indole-3-propionate.
    Inoue M; Hirano H; Sugiyama K; Ishida T; Nakagaki M
    Biochem Biophys Res Commun; 1982 Sep; 108(2):604-9. PubMed ID: 7150309
    [No Abstract]   [Full Text] [Related]  

  • 17. Solvent effects on thiamin-enzyme model interactions. I. Interactions with tryptophan.
    Farzami B; Mariam YH; Jordan F
    Biochemistry; 1977 Mar; 16(6):1105-10. PubMed ID: 14670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between thiamin phosphorylation and intestinal transport in vitro: effect of chloroethylthiamin.
    Basilico V; Ferrari G; D'Andrea G
    Boll Soc Ital Biol Sper; 1979 Sep; 55(17):1766-72. PubMed ID: 233071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast.
    Nosaka K; Kaneko Y; Nishimura H; Iwashima A
    FEMS Microbiol Lett; 1989 Jul; 51(1):55-9. PubMed ID: 2676709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identity of soluble thiamin-binding protein with thiamin-repressible acid phosphatase in Saccharomyces cerevisiae.
    Nosaka K; Nishimura H; Iwashima A
    Biochim Biophys Acta; 1988 Oct; 967(1):49-55. PubMed ID: 3048416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.