These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 13909521)

  • 1. Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement.
    SCHULTZ SG; SOLOMON AK
    J Gen Physiol; 1961 Nov; 45(2):355-69. PubMed ID: 13909521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CATION TRANSPORT IN ESCHERICHIA COLI. IV. KINETICS OF NET K UPTAKE.
    SCHULTZ SG; EPSTEIN W; SOLOMON AK
    J Gen Physiol; 1963 Nov; 47(2):329-46. PubMed ID: 14080819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of energy stored in the form of Na+ and K+ ion gradients by bacterial cells.
    Brown II; Galperin MYu ; Glagolev AN; Skulachev VP
    Eur J Biochem; 1983 Aug; 134(2):345-9. PubMed ID: 6307692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cation transport in Escherichia coli. II. Intracellular chloride concentration.
    SCHULTZ SG; WILSON NL; EPSTEIN W
    J Gen Physiol; 1962 Sep; 46(1):159-66. PubMed ID: 13909522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cation transport mechanisms in Mycoplasma mycoides var. Capri cells. The nature of the link between K+ and Na+ transport.
    Benyoucef M; Rigaud JL; Leblanc G
    Biochem J; 1982 Dec; 208(3):539-47. PubMed ID: 6219666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active K+ transport in Mycoplasma mycoides var. Capri. Net and unidirectional K+ movements.
    Leblanc G; Le Grimellec C
    Biochim Biophys Acta; 1979 Jun; 554(1):156-67. PubMed ID: 378256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ELECTROLYTE METABOLISM IN HELA CELLS.
    WICKSON-GINZBURG M; SOLOMON AK
    J Gen Physiol; 1963 Jul; 46(6):1303-15. PubMed ID: 14043004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion metabolism in a potassium accumulation mutant of Escherichia coli B. I. Potassium metabolism.
    Damadian R
    J Bacteriol; 1968 Jan; 95(1):113-22. PubMed ID: 4866095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles and Transport of Sodium and Potassium in Plants.
    Nieves-Cordones M; Al Shiblawi FR; Sentenac H
    Met Ions Life Sci; 2016; 16():291-324. PubMed ID: 26860305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of one of two Escherichia coli genes encoding putative Na+/H+ exchangers (ycgO) perturbs cytoplasmic alkali cation balance at low osmolarity.
    Verkhovskaya ML; Barquera B; Wikström M
    Microbiology (Reading); 2001 Nov; 147(Pt 11):3005-13. PubMed ID: 11700351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cation transport in Escherichia coli. VII. Potassium requirement for phosphate uptake.
    Weiden PL; Epstein W; Schultz SG
    J Gen Physiol; 1967 Jul; 50(6):1641-61. PubMed ID: 5340610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium and potassium transport in the halophilic yeast Debaryomyces hansenii.
    González-Hernández JC; Cárdenas-Monroy CA; Peña A
    Yeast; 2004 Apr; 21(5):403-12. PubMed ID: 15116341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Potassium Binding Protein Kbp Is a Cytoplasmic Potassium Sensor.
    Ashraf KU; Josts I; Mosbahi K; Kelly SM; Byron O; Smith BO; Walker D
    Structure; 2016 May; 24(5):741-749. PubMed ID: 27112601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular ion concentration and electrical activity in potassium-depleted mammalian soleus muscle fibers.
    Akaike N
    Pflugers Arch; 1976 Mar; 362(1):15-20. PubMed ID: 943775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations.
    Ginzburg M; Sachs L; Ginzburg BZ
    J Gen Physiol; 1970 Feb; 55(2):187-207. PubMed ID: 5413077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of the leakages of sodium ions into and potassium ions out of striated muscle cells.
    Sjodin RA; Beaugé LA
    J Gen Physiol; 1973 Feb; 61(2):222-50. PubMed ID: 4540059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cation transport in Escherichia coli. VIII. Potassium transport mutants.
    Rhoads DB; Waters FB; Epstein W
    J Gen Physiol; 1976 Mar; 67(3):325-41. PubMed ID: 4578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium accumulation and sodium efflux by Porphyra perforata tissues in lithium and magnesium sea water.
    EPPLEY RW
    J Gen Physiol; 1959 Sep; 43(1):29-38. PubMed ID: 13820476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sodium and lithium ions on the potassium ion transport systems of Escherichia coli.
    Sorensen EN; Rosen BP
    Biochemistry; 1980 Apr; 19(7):1458-62. PubMed ID: 6992866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Potassium transport in Escherichia coli B. II. Dependence of the intracellular steady-state potassium concentration upon the extracellular potassium and sodium concentrations in E. coli B 525].
    Pilwat G; Zimmermann U
    Z Naturforsch B Anorg Chem Org Chem Biochem Biophys Biol; 1972 Jan; 27(1):62-7. PubMed ID: 4401900
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.