BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 1391042)

  • 1. The effect of supercoiling on the in vitro transcription of the spoIIA operon from Bacillus subtilis.
    Bird T; Burbulys D; Wu JJ; Strauch MA; Hoch JA; Spiegelman GB
    Biochimie; 1992; 74(7-8):627-34. PubMed ID: 1391042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription of the Bacillus subtilis spoIIA locus.
    Wu JJ; Piggot PJ; Tatti KM; Moran CP
    Gene; 1991 May; 101(1):113-6. PubMed ID: 1905664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dacF-spoIIA operon of Bacillus subtilis, encoding sigma F, is autoregulated.
    Schuch R; Piggot PJ
    J Bacteriol; 1994 Jul; 176(13):4104-10. PubMed ID: 8021191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of developmental transcription factor sigma F by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis.
    Schmidt R; Margolis P; Duncan L; Coppolecchia R; Moran CP; Losick R
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9221-5. PubMed ID: 2123551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of transcription of the Bacillus subtilis spoIIA locus.
    Wu JJ; Howard MG; Piggot PJ
    J Bacteriol; 1989 Feb; 171(2):692-8. PubMed ID: 2492512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SpoIIAB is an anti-sigma factor that binds to and inhibits transcription by regulatory protein sigma F from Bacillus subtilis.
    Duncan L; Losick R
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2325-9. PubMed ID: 8460142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Bacillus subtilis response regulator Spo0A stimulates transcription of the spoIIG operon through modification of RNA polymerase promoter complexes.
    Bird TH; Grimsley JK; Hoch JA; Spiegelman GB
    J Mol Biol; 1996 Mar; 256(3):436-48. PubMed ID: 8604129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spo0A binds to a promoter used by sigma A RNA polymerase during sporulation in Bacillus subtilis.
    Satola S; Kirchman PA; Moran CP
    Proc Natl Acad Sci U S A; 1991 May; 88(10):4533-7. PubMed ID: 1903544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the sigma E form of RNA polymerase.
    Illing N; Errington J
    Mol Microbiol; 1991 Aug; 5(8):1927-40. PubMed ID: 1766372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the promoters of the Bacillus subtilis spoIIA and spoVA operons.
    Savva D
    Microbios; 1988; 53(216-217):167-74. PubMed ID: 3134591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic evidence that RNA polymerase associated with sigma A factor uses a sporulation-specific promoter in Bacillus subtilis.
    Kenney TJ; York K; Youngman P; Moran CP
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9109-13. PubMed ID: 2512576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Bacillus subtilis regulator SinR inhibits spoIIG promoter transcription in vitro without displacing RNA polymerase.
    Cervin MA; Lewis RJ; Brannigan JA; Spiegelman GB
    Nucleic Acids Res; 1998 Aug; 26(16):3806-12. PubMed ID: 9685500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that the transcriptional activator Spo0A interacts with two sigma factors in Bacillus subtilis.
    Baldus JM; Buckner CM; Moran CP
    Mol Microbiol; 1995 Jul; 17(2):281-90. PubMed ID: 7494477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal regulation and forespore-specific expression of the spore photoproduct lyase gene by sigma-G RNA polymerase during Bacillus subtilis sporulation.
    Pedraza-Reyes M; GutiƩrrez-Corona F; Nicholson WL
    J Bacteriol; 1994 Jul; 176(13):3983-91. PubMed ID: 8021181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase.
    Kalman S; Duncan ML; Thomas SM; Price CW
    J Bacteriol; 1990 Oct; 172(10):5575-85. PubMed ID: 2170324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the upstream activating sequence and site of carbon and nitrogen source repression in the promoter of an early-induced sporulation gene of Bacillus subtilis.
    Frisby D; Zuber P
    J Bacteriol; 1991 Dec; 173(23):7557-64. PubMed ID: 1938951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and phenotypic characterization of promoter-proximal mutations in the spoIIA locus of Bacillus subtilis.
    Challoner-Courtney IJ; Yudkin MD
    J Bacteriol; 1993 Sep; 175(17):5636-41. PubMed ID: 8366048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postexponential regulation of sin operon expression in Bacillus subtilis.
    Shafikhani SH; Mandic-Mulec I; Strauch MA; Smith I; Leighton T
    J Bacteriol; 2002 Jan; 184(2):564-71. PubMed ID: 11751836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of Bacillus subtilis genes transcribed in vitro and in vivo by a major sporulation-induced, DNA-dependent RNA polymerase.
    Ray GL; Haldenwang WG
    J Bacteriol; 1986 May; 166(2):472-8. PubMed ID: 3009401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of csh203::Tn917lac, a mutation in Bacillus subtilis that makes the sporulation sigma factor sigma-H essential for normal vegetative growth.
    Hicks KA; Grossman AD
    J Bacteriol; 1995 Jul; 177(13):3736-42. PubMed ID: 7601838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.