These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 1391204)
41. Substrate specificity of insect trypsins and the role of their subsites in catalysis. Lopes AR; Juliano MA; Marana SR; Juliano L; Terra WR Insect Biochem Mol Biol; 2006 Feb; 36(2):130-40. PubMed ID: 16431280 [TBL] [Abstract][Full Text] [Related]
42. Purification and characterization of trypsin from the poikilotherm Gadus morhua. Asgeirsson B; Fox JW; Bjarnason JB Eur J Biochem; 1989 Mar; 180(1):85-94. PubMed ID: 2707266 [TBL] [Abstract][Full Text] [Related]
43. Use of a new synthetic substrate, Nalpha-tosyl-L-arginine-P-nitroanilide (TAPA), for determining trypsin activity in the duodenal contents. Malis F; Kasafírek E; Fric P; Josífko M Acta Univ Carol Med Monogr; 1977; (79 Pt 3):131-8. PubMed ID: 615474 [TBL] [Abstract][Full Text] [Related]
44. Structure of Locusta migratoria protease inhibitor 3 (LMPI-3) in complex with Fusarium oxysporum trypsin. Leone P; Roussel A; Kellenberger C Acta Crystallogr D Biol Crystallogr; 2008 Nov; 64(Pt 11):1165-71. PubMed ID: 19020355 [TBL] [Abstract][Full Text] [Related]
45. Purification and characterization of an enzyme produced by Treponema denticola capable of hydrolyzing synthetic trypsin substrates. Ohta K; Makinen KK; Loesche WJ Infect Immun; 1986 Jul; 53(1):213-20. PubMed ID: 3013780 [TBL] [Abstract][Full Text] [Related]
46. Specificity of trypsin and alpha-chymotrypsin towards neutral substrates. Vajda T; Szabó T Acta Biochim Biophys Acad Sci Hung; 1976; 11(4):287-94. PubMed ID: 1026004 [TBL] [Abstract][Full Text] [Related]
47. Disulfide bond-modified trypsinogen. Role of disulfide 179-203 on the specificity characteristics of bovine trypsin toward synthetic substrates. Knights RJ; Light A J Biol Chem; 1976 Jan; 251(1):222-8. PubMed ID: 942666 [TBL] [Abstract][Full Text] [Related]
48. Kinetics of hydrolysis of amide and anilide substrates of p-guanidino-L-phenylalanine by bovine and porcine trypsins. Tsunematsu H; Nishimura H; Mizusaki K; Makisumi S J Biochem; 1985 Feb; 97(2):617-23. PubMed ID: 4008471 [TBL] [Abstract][Full Text] [Related]
49. The kinetics of hydrolysis of some extended N-aminoacyl-l-lysine methyl esters. Green GD; Tomalin G Eur J Biochem; 1976 Sep; 68(1):131-7. PubMed ID: 986943 [TBL] [Abstract][Full Text] [Related]
50. Interactions of derivatives of guanidinophenylglycine and guanidinophenylalanine with trypsin and related enzymes. Tsunematsu H; Makisumi S J Biochem; 1980 Dec; 88(6):1773-83. PubMed ID: 7462203 [TBL] [Abstract][Full Text] [Related]
51. Comparison of soluble and immobilized trypsin kinetics: Implications for peptide synthesis. Sears PS; Clark DS Biotechnol Bioeng; 1993 Jun; 42(1):118-24. PubMed ID: 18609655 [TBL] [Abstract][Full Text] [Related]
52. Comparison of trypsin and chymotrypsin from the viscera of anchovy, Engraulis japonica. Heu MS; Kim HR; Pyeun JH Comp Biochem Physiol B Biochem Mol Biol; 1995 Nov; 112(3):557-67. PubMed ID: 8529032 [TBL] [Abstract][Full Text] [Related]
53. Differences in PAR-2 activating potential by king crab (Paralithodes camtschaticus), salmon (Salmo salar), and bovine (Bos taurus) trypsin. Larsen AK; Kristiansen K; Sylte I; Seternes OM; Bang BE BMC Res Notes; 2013 Jul; 6():281. PubMed ID: 23870109 [TBL] [Abstract][Full Text] [Related]
54. Interactions of derivatives of guanidinophenylalanine and guanidinophenylglycine with Streptomyces griseus trypsin. Hatanaka Y; Tsunematsu H; Mizusaki K; Makisumi S Biochim Biophys Acta; 1985 Dec; 832(3):274-9. PubMed ID: 3935172 [TBL] [Abstract][Full Text] [Related]
55. Kinetics of hydrolysis of Na-benzoyl-p-guanidino-L-phenylalanine p-nitroanilide by trypsin. Tsunematsu H; Imamura T; Makisumi S J Biochem; 1983 Jul; 94(1):123-8. PubMed ID: 6619104 [TBL] [Abstract][Full Text] [Related]
57. A kinetic analysis of the inhibition of rat and bovine trypsins by naturally occurring protease inhibitors. Hanlon MH; Liener IE Comp Biochem Physiol B; 1986; 84(1):53-7. PubMed ID: 3720291 [TBL] [Abstract][Full Text] [Related]
58. Purification, properties and substrate specificity of a digestive trypsin from Periplaneta americana (Dictyoptera) adults. Lopes AR; Terra WR Insect Biochem Mol Biol; 2003 Apr; 33(4):407-15. PubMed ID: 12650689 [TBL] [Abstract][Full Text] [Related]
59. Demonstration that 1-trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane (E-64) is one of the most effective low Mr inhibitors of trypsin-catalysed hydrolysis. Characterization by kinetic analysis and by energy minimization and molecular dynamics simulation of the E-64-beta-trypsin complex. Sreedharan SK; Verma C; Caves LS; Brocklehurst SM; Gharbia SE; Shah HN; Brocklehurst K Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):777-86. PubMed ID: 8670152 [TBL] [Abstract][Full Text] [Related]
60. Hydrolysis of artificial substrates by enterokinase and trypsin and the development of a sensitive specific assay for enterokinase in serum. Grant DA; Hermon-Taylor J Biochim Biophys Acta; 1979 Mar; 567(1):207-15. PubMed ID: 454624 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]