These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1391406)

  • 1. In vivo degradation of massive poly(alpha-hydroxy acids): validation of in vitro findings.
    Therin M; Christel P; Li S; Garreau H; Vert M
    Biomaterials; 1992; 13(9):594-600. PubMed ID: 1391406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition.
    Park TG
    Biomaterials; 1995 Oct; 16(15):1123-30. PubMed ID: 8562787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-vivo degradation of poly(lactic acid) of different molecular weights.
    Chawla AS; Chang TM
    Biomater Med Devices Artif Organs; 1985-1986; 13(3-4):153-62. PubMed ID: 3841816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence.
    Grizzi I; Garreau H; Li S; Vert M
    Biomaterials; 1995 Mar; 16(4):305-11. PubMed ID: 7772670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of PLA/GA polymers: increasing complexity.
    Vert M; Mauduit J; Li S
    Biomaterials; 1994 Dec; 15(15):1209-13. PubMed ID: 7703316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids.
    Li S
    J Biomed Mater Res; 1999; 48(3):342-53. PubMed ID: 10398040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autocatalytic equation describing the change in molecular weight during hydrolytic degradation of aliphatic polyesters.
    Antheunis H; van der Meer JC; de Geus M; Heise A; Koning CE
    Biomacromolecules; 2010 Apr; 11(4):1118-24. PubMed ID: 20187614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraocular degradation behavior of crosslinked and linear poly(trimethylene carbonate) and poly(D,L-lactic acid).
    Jansen J; Koopmans SA; Los LI; van der Worp RJ; Podt JG; Hooymans JM; Feijen J; Grijpma DW
    Biomaterials; 2011 Aug; 32(22):4994-5002. PubMed ID: 21507481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attempts to map the structure and degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids.
    Vert M; Li SM; Garreau H
    J Biomater Sci Polym Ed; 1994; 6(7):639-49. PubMed ID: 7873515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro degradation of glycine/DL-lactic acid copolymers.
    Helder J; Dijkstra PJ; Feijen J
    J Biomed Mater Res; 1990 Aug; 24(8):1005-20. PubMed ID: 2394759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation.
    Hooper KA; Macon ND; Kohn J
    J Biomed Mater Res; 1998 Sep; 41(3):443-54. PubMed ID: 9659614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(L-lactide): a long-term degradation study in vivo. Part III. Analytical characterization.
    Pistner H; Bendix DR; Mühling J; Reuther JF
    Biomaterials; 1993; 14(4):291-8. PubMed ID: 8476999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of high molecular weight poly(L-lactide) in alkaline medium.
    Cam D; Hyon SH; Ikada Y
    Biomaterials; 1995 Jul; 16(11):833-43. PubMed ID: 8527598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability study of nanoparticles of poly(epsilon-caprolactone), poly(D,L-lactide) and poly(D,L-lactide-co-glycolide).
    Lemoine D; Francois C; Kedzierewicz F; Preat V; Hoffman M; Maincent P
    Biomaterials; 1996 Nov; 17(22):2191-7. PubMed ID: 8922605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polyactide particles.
    Bergsma JE; Rozema FR; Bos RR; Boering G; de Bruijn WC; Pennings AJ
    Biomaterials; 1995 Mar; 16(4):267-74. PubMed ID: 7772665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study on the in vitro degradation of poly(lactic acid).
    Migliaresi C; Fambri L; Cohn D
    J Biomater Sci Polym Ed; 1994; 5(6):591-606. PubMed ID: 8086385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers.
    Nelson KD; Romero A; Waggoner P; Crow B; Borneman A; Smith GM
    Tissue Eng; 2003 Dec; 9(6):1323-30. PubMed ID: 14670119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of polydispersed poly(L-lactic acid) to modulate lactic acid release.
    von Recum HA; Cleek RL; Eskin SG; Mikos AG
    Biomaterials; 1995 Apr; 16(6):441-7. PubMed ID: 7654870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method.
    Gong Y; Zhou Q; Gao C; Shen J
    Acta Biomater; 2007 Jul; 3(4):531-40. PubMed ID: 17350355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resorbable materials of poly(L-lactide). VII. In vivo and in vitro degradation.
    Leenslag JW; Pennings AJ; Bos RR; Rozema FR; Boering G
    Biomaterials; 1987 Jul; 8(4):311-4. PubMed ID: 3663810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.