BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1391442)

  • 1. Hemoglobin-based oxygen carriers (HBOCs): structural alterations that affect free radical generation.
    Alayash AI; Ryan BA; Fratantoni JC; Bonaventura J; Bonaventura C
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(2-4):277-81. PubMed ID: 1391442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consequences of chemical modifications on the free radical reactions of human hemoglobin.
    Alayash AI; Fratantoni JC; Bonaventura C; Bonaventura J; Bucci E
    Arch Biochem Biophys; 1992 Oct; 298(1):114-20. PubMed ID: 1524419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hypothermic conditions on the oxygen carrying capacity of crosslinked hemoglobins.
    Alayash AI; Frantantoni JC
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(2-4):259-62. PubMed ID: 1391440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of intra- and intermolecular crosslinking on the free radical reactions of bovine hemoglobins.
    Alayash AI
    Free Radic Biol Med; 1995 Feb; 18(2):295-301. PubMed ID: 7744314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific cross-linking of human and bovine hemoglobins differentially alters oxygen binding and redox side reactions producing rhombic heme and heme degradation.
    Nagababu E; Ramasamy S; Rifkind JM; Jia Y; Alayash AI
    Biochemistry; 2002 Jun; 41(23):7407-15. PubMed ID: 12044174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing of ferulic acid modified hemoglobin.
    Guo S; Wang P; Chen C; Meng Z; Qi D; Wang X
    Artif Cells Nanomed Biotechnol; 2016 Jun; 44(4):1075-9. PubMed ID: 26838267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential susceptibilities of the prosthetic heme of hemoglobin-based red cell substitutes. Implications in the design of safer agents.
    Osawa Y; Darbyshire JF; Meyer CA; Alayash AI
    Biochem Pharmacol; 1993 Dec; 46(12):2299-305. PubMed ID: 8274164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide binding to human ferrihemoglobins cross-linked between either alpha or beta subunits.
    Alayash AI; Fratantoni JC; Bonaventura C; Bonaventura J; Cashon RE
    Arch Biochem Biophys; 1993 Jun; 303(2):332-8. PubMed ID: 8512319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cross-linking and zero-link polymerization on oxygen transport and redox chemistry of bovine hemoglobin.
    Jia Y; Alayash AI
    Biochim Biophys Acta; 2009 Aug; 1794(8):1234-42. PubMed ID: 19409516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Biochemical and Biophysical Characterization of Hemoglobin-Based Oxygen Carrier Therapeutics: All HBOCs Are Not Created Equally.
    Meng F; Kassa T; Jana S; Wood F; Zhang X; Jia Y; D'Agnillo F; Alayash AI
    Bioconjug Chem; 2018 May; 29(5):1560-1575. PubMed ID: 29570272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroelectrochemical study of hemoglobin A, alpha- and beta-fumarate crosslinked hemoglobins; implications to autoxidation reaction.
    Dragan SA; Olsen KW; Moore EG; Fitch A
    Bioelectrochemistry; 2008 Jun; 73(1):55-63. PubMed ID: 18515189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and oxygen-binding properties of divinyl-sulfone-reacted bovine hemoglobin as a function of protein ligation state and reactant concentration.
    Ilan E
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):677-86. PubMed ID: 7994388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A PEGylated bovine hemoglobin as a potent hemoglobin-based oxygen carrier.
    Wang Y; Wang L; Yu W; Gao D; You G; Li P; Zhang S; Zhang J; Hu T; Zhao L; Zhou H
    Biotechnol Prog; 2017 Jan; 33(1):252-260. PubMed ID: 27696787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidized mono-, di-, tri-, and polysaccharides as potential hemoglobin cross-linking reagents for the synthesis of high oxygen affinity artificial blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(3):953-62. PubMed ID: 15176904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-generation blood substitutes: what have we learned? Biochemical and physiological perspectives.
    Alayash AI; D'Agnillo F; Buehler PW
    Expert Opin Biol Ther; 2007 May; 7(5):665-75. PubMed ID: 17477804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction of a new regulatory mechanism into human hemoglobin.
    Fronticelli C; Bobofchak KM; Karavitis M; Sanna MT; Brinigar WS
    Biophys Chem; 2002 Jul; 98(1-2):115-26. PubMed ID: 12128194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Down selection of polymerized bovine hemoglobins for use as oxygen releasing therapeutics in a guinea pig model.
    Baek JH; Zhou Y; Harris DR; Schaer DJ; Palmer AF; Buehler PW
    Toxicol Sci; 2012 Jun; 127(2):567-81. PubMed ID: 22416071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All hemoglobin-based oxygen carriers are not created equally.
    Buehler PW; Alayash AI
    Biochim Biophys Acta; 2008 Oct; 1784(10):1378-81. PubMed ID: 18206989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction of human hemoglobin HbA0 and two cross-linked derivatives with hydrogen peroxide: differential behavior of the ferryl intermediate.
    Cashon RE; Alayash AI
    Arch Biochem Biophys; 1995 Jan; 316(1):461-9. PubMed ID: 7840650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant effects of vitamin C on hemoglobin-based oxygen carriers derived from human cord blood.
    Chen G; Duan Y; Liu J; Wang H; Yang C
    Artif Cells Nanomed Biotechnol; 2016; 44(1):56-61. PubMed ID: 26671172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.