These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 139146)

  • 1. The acetylated NH2-terminus of CaATPase from rabbit skeletal muscle sarcoplasmic reticulum: a commom NH2-terminal acetylated methionyl sequence.
    Tong SW
    Biochem Biophys Res Commun; 1977 Feb; 74(3):1242-8. PubMed ID: 139146
    [No Abstract]   [Full Text] [Related]  

  • 2. Alignment of the major tryptic fragments of the adenosine triphosphatase from sarcoplasmic reticulum.
    Klip A; Reithmeier RA; MacLennan DH
    J Biol Chem; 1980 Jul; 255(14):6562-8. PubMed ID: 6446559
    [No Abstract]   [Full Text] [Related]  

  • 3. A 31-residue tryptic peptide from the active site of the [Ca++]-transporting adenosine triphosphatase of rabbit sarcoplasmic reticulum.
    Allen G; Green NM
    FEBS Lett; 1976 Mar; 63(1):188-92. PubMed ID: 131039
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparison of the (Ca2+ + Mg2+)-ATPase proteins from normal and dystrophic chicken sarcoplasmic reticulum.
    Hanna SD; Baskin RJ
    Biochim Biophys Acta; 1978 Apr; 540(1):144-50. PubMed ID: 147712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the structure of the calcium-dependent adenosine triphosphatase from rabbit skeletal muscle sarcoplasmic reticulum.
    Tong SW
    Arch Biochem Biophys; 1980 Sep; 203(2):780-91. PubMed ID: 6450567
    [No Abstract]   [Full Text] [Related]  

  • 6. Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. 8. Molecular mechanism of the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum.
    Yamada S; Sumida M; Tonomura Y
    J Biochem; 1972 Dec; 72(6):1537-48. PubMed ID: 4268997
    [No Abstract]   [Full Text] [Related]  

  • 7. Arginyl residue modification of the sarcoplasmic reticulum ATPase protein.
    Murphy AJ
    Biochem Biophys Res Commun; 1976 Jun; 70(4):1048-54. PubMed ID: 133684
    [No Abstract]   [Full Text] [Related]  

  • 8. Presence of glycosphingolipids in the sarcoplasmic reticulum fraction of rabbit skeletal muscle.
    Narasimhan R; Murray RK; Maclennan DH
    FEBS Lett; 1974 Jul; 43(1):23-6. PubMed ID: 4277613
    [No Abstract]   [Full Text] [Related]  

  • 9. Primary structure of the calcium ion-transporting adenosine triphosphatase of rabbit skeletal sarcoplasmic reticulum. Soluble peptides from the alpha-chymotryptic digest of the carboxymethylated protein.
    Allen G
    Biochem J; 1980 Jun; 187(3):565-75. PubMed ID: 6234879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting the transient phase of the Ca2+, Mg2+-dependent ATPase reaction of sarcoplasmic reticulum from skeletal muscle.
    Takisawa H; Tonomura Y
    J Biochem; 1978 May; 83(5):1275-84. PubMed ID: 149120
    [No Abstract]   [Full Text] [Related]  

  • 11. The modification of the reconstituted sarcoplasmic ATPase by monovalent cations.
    The R; Hasselbach W
    Eur J Biochem; 1972 Oct; 30(2):318-24. PubMed ID: 4268263
    [No Abstract]   [Full Text] [Related]  

  • 12. Sarcoplasmic reticulum adenosine triphosphatase: labeling of an essential lysyl residue with pyridoxal-5'-phosphate.
    Murphy AJ
    Arch Biochem Biophys; 1977 Apr; 180(1):114-20. PubMed ID: 140625
    [No Abstract]   [Full Text] [Related]  

  • 13. Assembly of the sarcoplasmic reticulum. Cell-free synthesis of te Ca2+ + Mg2+-adenosine triphosphatase and calsequestrin.
    Reithmeier RA; de Leon S; MacLennan DH
    J Biol Chem; 1980 Dec; 255(24):11839-46. PubMed ID: 6160154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. IX. Kinetic studies on the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum.
    Yamada S; Tonomura Y
    J Biochem; 1973 Dec; 74(6):1091-6. PubMed ID: 4273602
    [No Abstract]   [Full Text] [Related]  

  • 15. Lanthanide ions and skeletal muscle sarcoplasmic reticulm. I. Gadolinium localization by electron microscopy.
    Remedios CD
    J Biochem; 1977 Mar; 81(3):703-8. PubMed ID: 140864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ca2+-dependent ATPases of the sarcoplasmic reticulum of skeletal and cardiac muscles and their ion-transporting fragments].
    Levitskiĭ DO; Grishin EV; Biriukova TV; Lebedev AV; Nikolaeva LN
    Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1981; 4(2):7-15. PubMed ID: 6459108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential reactions in Pi utilization for ATP synthesis by sarcoplasmic reticulum.
    Chaloub RM; Guimaraes-Motta H; Verjovski-Almeida S; de Meis L; Inesi G
    J Biol Chem; 1979 Oct; 254(19):9464-8. PubMed ID: 158589
    [No Abstract]   [Full Text] [Related]  

  • 18. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. X. Direct evidence for Ca2 plus translocation coupled with formation of a phosphorylated intermediate.
    Sumida M; Tonomura Y
    J Biochem; 1974 Feb; 75(2):283-97. PubMed ID: 4276200
    [No Abstract]   [Full Text] [Related]  

  • 19. Association of basal ATPase activity and cholesterol with a distinct group of rabbit skeletal muscle microsomal particles.
    Flaherty JO; Barrett EJ; Bradley DP; Headon DR
    Biochim Biophys Acta; 1975 Aug; 401(2):177-83. PubMed ID: 125611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Dynamics of the state of the calcium pump of the skeletal muscle sarcoplasmic reticulum in rabbit ontogenesis].
    Meerson FZ; Panchenko LF; Aliev MK
    Zh Evol Biokhim Fiziol; 1974; 10(5):462-7. PubMed ID: 4280220
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.