These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 13915910)

  • 1. The relationship between glutathione and protein sulphydryl groups in germinating pea seeds.
    SPRAGG SP; LIEVESLEY PM; WILSON KM
    Biochem J; 1962 May; 83(2):314-8. PubMed ID: 13915910
    [No Abstract]   [Full Text] [Related]  

  • 2. [Glutathione reductase and cystine reductase in germinating and ripening pea seeds].
    ZUEVA ES; PROSKURIAKOV NI
    Biokhimiia; 1960; 25():897-900. PubMed ID: 13788934
    [No Abstract]   [Full Text] [Related]  

  • 3. Cadmium affects the glutathione/glutaredoxin system in germinating pea seeds.
    Smiri M; Chaoui A; Rouhier N; Gelhaye E; Jacquot JP; El Ferjani E
    Biol Trace Elem Res; 2011 Jul; 142(1):93-105. PubMed ID: 20552295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds.
    Wojtyla Ł; Garnczarska M; Zalewski T; Bednarski W; Ratajczak L; Jurga S
    J Plant Physiol; 2006 Dec; 163(12):1207-20. PubMed ID: 16904793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The oxidation of glutathione by a lipoxidase enzyme from pea seeds.
    MAPSON LW; MOUSTAFA EM
    Biochem J; 1955 May; 60(1):71-80. PubMed ID: 14363187
    [No Abstract]   [Full Text] [Related]  

  • 6. The biosynthesis of beta-amyrin and beta-sitosterol in germinating seeds of Pisum sativum.
    BAISTED DJ; CAPSTACK E; NES WR
    Biochemistry; 1962 May; 1():537-41. PubMed ID: 13864088
    [No Abstract]   [Full Text] [Related]  

  • 7. A quantitative comparison of sulphydryl content and formazan in the tissues of the pea radicle.
    JAMBOR B; DEVAY M; ROBERTS LW
    Nature; 1957 Nov; 180(4593):997-8. PubMed ID: 13483586
    [No Abstract]   [Full Text] [Related]  

  • 8. The hydrolysis of glucose monophosphates by a phosphatase preparation from pea seeds.
    TURNER DH; TURNER JF
    Biochem J; 1960 Mar; 74(3):486-91. PubMed ID: 13839934
    [No Abstract]   [Full Text] [Related]  

  • 9. Immunolocalization of pectic polysaccharides during abscission in pea seeds (Pisum sativum L.) and in abscission less def pea mutant seeds.
    Lee Y; Ayeh KO; Ambrose M; Hvoslef-Eide AK
    BMC Res Notes; 2016 Aug; 9(1):427. PubMed ID: 27581466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiamine binding and metabolism in germinating seeds of selected cereals and legumes.
    Gołda A; Szyniarowski P; Ostrowska K; Kozik A; Rapała-Kozik M
    Plant Physiol Biochem; 2004 Mar; 42(3):187-95. PubMed ID: 15051042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleoside monophosphokinase of pea seeds.
    KIRKLAND RJ; TURNER JF
    Biochim Biophys Acta; 1959 Nov; 36():283-4. PubMed ID: 14409348
    [No Abstract]   [Full Text] [Related]  

  • 12. Adenylic deaminase of pea seeds.
    TURNER DH; TURNER JF
    Biochem J; 1961 Apr; 79(1):143-7. PubMed ID: 13778717
    [No Abstract]   [Full Text] [Related]  

  • 13. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.
    Bogdanov IV; Shenkarev ZO; Finkina EI; Melnikova DN; Rumynskiy EI; Arseniev AS; Ovchinnikova TV
    BMC Plant Biol; 2016 Apr; 16():107. PubMed ID: 27137920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutathione and ascorbic acid in the metabolism of germinating peas.
    SPRAGG SP; YEMM EW
    Biochem J; 1954 Jun; 58(330th Meeting):xi-xii. PubMed ID: 13198889
    [No Abstract]   [Full Text] [Related]  

  • 15. Pattern of expression and characteristics of a cysteine proteinase cDNA from germinating seeds of pea (Pisum sativum L.).
    Jones CG; Tucker GA; Lycett GW
    Biochim Biophys Acta; 1996 Aug; 1296(1):13-5. PubMed ID: 8765223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of nanosilver on the efficiency of Pisum sativum crops germination.
    Barabanov PV; Gerasimov AV; Blinov AV; Kravtsov AA; Kravtsov VA
    Ecotoxicol Environ Saf; 2018 Jan; 147():715-719. PubMed ID: 28942273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding Starch Metabolism in Pea Seeds towards Tailoring Functionality for Value-Added Utilization.
    Yu B; Xiang D; Mahfuz H; Patterson N; Bing D
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds.
    Smrkolj P; Germ M; Kreft I; Stibilj V
    J Exp Bot; 2006; 57(14):3595-600. PubMed ID: 16957016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation and quantification of the cellular thiol pool of pea plants treated with heat, salt and atrazine.
    Ivanov SV; Kerchev PI
    Phytochem Anal; 2007; 18(4):283-90. PubMed ID: 17623362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the protein patterns in pea (Pisum sativum L.) roots under the influence of long- and short-term chilling stress and post-stress recovery.
    Badowiec A; Swigonska S; Weidner S
    Plant Physiol Biochem; 2013 Oct; 71():315-24. PubMed ID: 24012770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.