BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 139177)

  • 1. Studies on the regulation of glycolysis in isolated fetal rat hepatocytes.
    Hommes FA; Luit-De Haan G
    Biol Neonate; 1977; 31(1-2):65-70. PubMed ID: 139177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actions of glucagon on flux rates in perfused rat liver. 1. Kinetics of the inhibitory effect on glycolysis and the stimulatory effect on glycogenolysis.
    Kimmig R; Mauch TJ; Kerzl W; Schwabe U; Scholz R
    Eur J Biochem; 1983 Nov; 136(3):609-16. PubMed ID: 6641732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose-glucose 6-phosphate cycling in hepatocytes determined by incorporation of 3HOH and D2O. Effect of glycosyns and fructose.
    Wals PA; Katz J
    J Biol Chem; 1994 Jul; 269(28):18343-52. PubMed ID: 8034579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycogenesis in the cultured fetal and adult rat hepatocyte is differently regulated by medium glucose.
    Zheng Q; Levitsky LL; Fan J; Ciletti N; Mink K
    Pediatr Res; 1992 Dec; 32(6):714-8. PubMed ID: 1287563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perinatal changes in glycolytic function in response to hypoxia in the incubated or perfused rat heart.
    Hoerter JA; Opie LH
    Biol Neonate; 1978; 33(3-4):144-61. PubMed ID: 150293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of glucagon, phenylephrine, and isoproterenol on glycogenolysis and glucose release from fetal rat hepatocytes in suspension.
    Hühn W; Schulze HP; Dargel R
    Biol Neonate; 1983; 44(3):153-7. PubMed ID: 6626625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of glucose and gluconeogenic substrates to insulin-stimulated glycogen synthesis in cultured fetal hepatocytes.
    Plas C; Forest N; Pringault E; Menuelle P
    J Cell Physiol; 1982 Dec; 113(3):475-80. PubMed ID: 6757260
    [No Abstract]   [Full Text] [Related]  

  • 8. Relative contribution of glycogen synthesis and glycolysis to insulin-mediated glucose uptake. A dose-response euglycemic clamp study in normal and diabetic rats.
    Rossetti L; Giaccari A
    J Clin Invest; 1990 Jun; 85(6):1785-92. PubMed ID: 2189891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fetal and neonatal responses to extended maternal canine starvation. II. Fetal and neonatal liver metabolism.
    Miettinen EL; Kliegman RM
    Pediatr Res; 1983 Aug; 17(8):639-44. PubMed ID: 6889007
    [No Abstract]   [Full Text] [Related]  

  • 10. Quantitation of fluxes in the gluconeogenic, glycolytic, and pentose phosphate pathways in isolated rat hepatocytes: energetic considerations.
    Blum JJ; Rabkin MS
    Adv Exp Med Biol; 1986; 194():255-70. PubMed ID: 2944357
    [No Abstract]   [Full Text] [Related]  

  • 11. Isotopic evidence for futile cycles in liver cells.
    Clark DG; Rognstad R; Katz J
    Biochem Biophys Res Commun; 1973 Oct; 54(3):1141-8. PubMed ID: 4356656
    [No Abstract]   [Full Text] [Related]  

  • 12. Glycolytic intermediates and adenosine phosphates in rat liver at high altitude (3,800 m).
    Cipriano LF; Pace N
    Am J Physiol; 1973 Aug; 225(2):393-8. PubMed ID: 4269147
    [No Abstract]   [Full Text] [Related]  

  • 13. [Hepatic glycolytic intermediates and glucoregulatory enzymes in septic shock due to peritonitis: experimental study in rats].
    Ebata T; Hirata K; Denno R; Gotoh Y; Azuma K; Ishida K; Hasegawa I; Hayasaka H
    Nihon Geka Gakkai Zasshi; 1984 Jan; 85(1):1-5. PubMed ID: 6234452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of glycolysis in rat liver by glucokinase and phosphofructokinase: influence of glucose concentration.
    Torres NV; Mateo F; Riol-Cimas JM; Meléndez-Hevia E
    Mol Cell Biochem; 1990 Mar; 93(1):21-6. PubMed ID: 2139493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of adrenaline, hydrocortisone, insulin and dibutyryl-cAMP on glycolysis and glycogenolysis in white rat liver slices].
    Panin LE; Tret'iakova TA
    Biull Eksp Biol Med; 1978 Nov; 86(11):541-4. PubMed ID: 214183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The hormonal regulation of the hepatic glycogenolysis in the newborn (author's transl)].
    Okazaki H
    Nihon Sanka Fujinka Gakkai Zasshi; 1980 May; 32(5):541-9. PubMed ID: 6263998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition time control analysis of a glycolytic system under different glucose concentrations. Control of transition time versus control of flux.
    Torres NV; Meléndez-Hevia E
    Mol Cell Biochem; 1992 Jun; 112(2):109-15. PubMed ID: 1386406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of glycolysis is associated with an increase in glucose cycling in hepatocytes from diabetic rats.
    Henly DC; Phillips JW; Berry MN
    J Biol Chem; 1996 May; 271(19):11268-71. PubMed ID: 8626677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on glycolysis in vitro: role of glucose phosphorylation and phosphofructokinase activity on total velocity.
    Meléndez-Hevia E; Siverio JM; Pérez JA
    Int J Biochem; 1984; 16(5):469-76. PubMed ID: 6233195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose metabolism in the fetus in utero: the effect of maternal fasting and glucose loading in the rat.
    Goodner CJ; Thompson DJ
    Pediatr Res; 1967 Nov; 1(6):443-51. PubMed ID: 5583449
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.