These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 13918929)

  • 21. Effects of maleic acid administration on urinary excretion of DCEC, and on tissue protein, in the rat.
    Shimomura M
    Physiol Chem Phys; 1977; 9(6):539-42. PubMed ID: 614593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on the biochemistry of Penicillium charlesii. Influence of various dicarboxylic acids on galactocarolose synthesis.
    Jordan JM; Gander JE
    Biochem J; 1966 Sep; 100(3):694-701. PubMed ID: 5969282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymic cleavage of malate to glyoxylate and acetyl-coenzyme A.
    TUBOI S; KIKUCHI G
    J Biochem; 1963 May; 53():364-73. PubMed ID: 13994662
    [No Abstract]   [Full Text] [Related]  

  • 24. [Use of maleic acid by mixed cultures of microorganisms].
    Safronova IIu; Semenova EV
    Prikl Biokhim Mikrobiol; 2002; 38(4):401-4. PubMed ID: 12325296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro action of thyroxine analogs on succinate and malate oxidation.
    BARKER SB
    Endocrinology; 1957 Nov; 61(5):534-48. PubMed ID: 13480264
    [No Abstract]   [Full Text] [Related]  

  • 26. Factors influencing catalytic wet peroxide oxidation of maleic acid in aqueous phase over copper/micelle templated silica-3-aminopropyltrimethoxysilane catalyst.
    Daniel L; Katima JH
    Water Sci Technol; 2009; 60(10):2621-7. PubMed ID: 19923768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dependence on dicarboxylic acids and energy of citrate accumulation in depleted rat liver mitochondria.
    Harris EJ
    Biochem J; 1968 Sep; 109(2):247-51. PubMed ID: 5679366
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [THE EFFECT AND METABOLISM OF MALEIC ACID IN THE KIDNEY].
    ANGIELSKI S
    Acta Biol Med (Gdansk); 1963; 7():61-97. PubMed ID: 14051095
    [No Abstract]   [Full Text] [Related]  

  • 29. On the relationship between the oxidation of malate and isocitrate and the synthesis of long-chain fatty acids.
    HULSMANN WC
    Biochim Biophys Acta; 1962 Aug; 62():620-2. PubMed ID: 14449920
    [No Abstract]   [Full Text] [Related]  

  • 30. Evidence for maleate penetration into rat liver mitochondria.
    Lê-Quôc-Bruguera ID; Gaudemer Y
    Biochimie; 1973; 55(11):1511-3. PubMed ID: 4790857
    [No Abstract]   [Full Text] [Related]  

  • 31. MALIC ENZYME AND LIPOGENESIS.
    WISE EM; BALL EG
    Proc Natl Acad Sci U S A; 1964 Nov; 52(5):1255-63. PubMed ID: 14231450
    [No Abstract]   [Full Text] [Related]  

  • 32. Malate metabolism in Hoya carnosa mitochondria and its role in photosynthesis during CAM phase III.
    Hong HT; Nose A; Agarie S; Yoshida T
    J Exp Bot; 2008; 59(7):1819-27. PubMed ID: 18403382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of maleic acid on the kidney. I. Oxidation of Krebs cycle intermediates by various tissues of maleate-intoxicated rats.
    ANGIELSKI S; ROGULSKI J
    Acta Biochim Pol; 1962; 9():357-65. PubMed ID: 14013180
    [No Abstract]   [Full Text] [Related]  

  • 34. [Biological acid degradation in wine. II. The regulation of maleic acid degradation in grape wine by addition of tartaric acid and sugar].
    Wejnar R
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1966; 120(2):132-40. PubMed ID: 5953534
    [No Abstract]   [Full Text] [Related]  

  • 35. Reduction of glutathione coupled with oxidative decarboxylation of malate in cattle lens.
    VAN HEYNINGEN R; PIRIE A
    Biochem J; 1953 Feb; 53(3):436-44. PubMed ID: 13032091
    [No Abstract]   [Full Text] [Related]  

  • 36. Gluconeogenesis in the kidney cortex. Effects of D-malate and amino-oxyacetate.
    Rognstad R; Katz J
    Biochem J; 1970 Feb; 116(3):483-91. PubMed ID: 5435692
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [NEW RESEARCH ON THE FORMATION OF PYOCYANIN].
    VALETTE JP; LABEYRIE S; NEUZIL E
    C R Seances Soc Biol Fil; 1964; 158():1343-7. PubMed ID: 14210570
    [No Abstract]   [Full Text] [Related]  

  • 38. Jerusalem artichoke mitochondria can export reducing equivalents in the form of malate as a result of D-lactate uptake and metabolism.
    de Bari L; Valenti D; Pizzuto R; Paventi G; Atlante A; Passarella S
    Biochem Biophys Res Commun; 2005 Oct; 335(4):1224-30. PubMed ID: 16129093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of urinary 2-{[2-(acetylamino-2-carboxyethyl]sulfanyl}butanedioic acid, a mercapturic acid of rats treated with maleic acid.
    Luo YS; Tsai HY; Chen HC; Wu C; Shen LC; Chung WS; Chiang SY; Wu KY
    Toxicol Lett; 2015 Aug; 236(3):131-7. PubMed ID: 25997398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover.
    Lu Y; Mosier NS
    Biotechnol Bioeng; 2008 Dec; 101(6):1170-81. PubMed ID: 18781694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.