These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1392244)

  • 1. Automated local maximum-intensity projection with three-dimensional vessel tracking.
    Lin W; Haacke EM; Masaryk TJ; Smith AS
    J Magn Reson Imaging; 1992; 2(5):519-26. PubMed ID: 1392244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracranial aneurysms: depiction on MR angiograms with a multifeature-extraction, ray-tracing postprocessing algorithm.
    Atlas SW; Listerud J; Chung W; Flamm ES
    Radiology; 1994 Jul; 192(1):129-39. PubMed ID: 8208924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracranial MR angiography: application of magnetization transfer contrast and fat saturation to short gradient-echo, velocity-compensated sequences.
    Lin W; Tkach JA; Haacke EM; Masaryk TJ
    Radiology; 1993 Mar; 186(3):753-61. PubMed ID: 8430184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional time-of-flight MR angiography in the evaluation of cerebral aneurysms.
    Sevick RJ; Tsuruda JS; Schmalbrock P
    J Comput Assist Tomogr; 1990; 14(6):874-81. PubMed ID: 2229560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing three-dimensional time-of-flight MR angiography with variable repetition time.
    Tkach JA; Lin W; Duda JJ; Haacke EM; Masaryk TJ
    Radiology; 1994 Jun; 191(3):805-11. PubMed ID: 8184069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a connected-voxel algorithm to MR angiographic data.
    Saloner D; Hanson WA; Tsuruda JS; van Tyen R; Anderson CM; Lee RE
    J Magn Reson Imaging; 1991; 1(4):423-30. PubMed ID: 1790364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of partial-volume artifacts with zero-filled interpolation in three-dimensional MR angiography.
    Du YP; Parker DL; Davis WL; Cao G
    J Magn Reson Imaging; 1994; 4(5):733-41. PubMed ID: 7981519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vessel and intracranial aneurysm segmentation using multi-range filters and local variances.
    Law MW; Chung AC
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):866-74. PubMed ID: 18051140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition.
    Davis WL; Warnock SH; Harnsberger HR; Parker DL; Chen CX
    J Comput Assist Tomogr; 1993; 17(1):15-21. PubMed ID: 8419427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo regional cerebral blood volume: quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging.
    Kuppusamy K; Lin W; Cizek GR; Haacke EM
    Radiology; 1996 Oct; 201(1):106-12. PubMed ID: 8816529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MR angiography of the head and neck: value of two-dimensional phase-contrast projection technique.
    Applegate GR; Talagala SL; Applegate LJ
    AJR Am J Roentgenol; 1992 Aug; 159(2):369-74. PubMed ID: 1632359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and characterization of intracranial aneurysms with MR angiography: comparison of volume-rendering and maximum-intensity-projection algorithms.
    Mallouhi A; Felber S; Chemelli A; Dessl A; Auer A; Schocke M; Jaschke WR; Waldenberger P
    AJR Am J Roentgenol; 2003 Jan; 180(1):55-64. PubMed ID: 12490476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of maximum intensity projections in CT angiography: a basic review.
    Prokop M; Shin HO; Schanz A; Schaefer-Prokop CM
    Radiographics; 1997; 17(2):433-51. PubMed ID: 9084083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A data adaptive reprojection technique for MR angiography.
    Korosec FR; Weber DM; Mistretta CA; Turski PA; Bernstein MA
    Magn Reson Med; 1992 Apr; 24(2):262-74. PubMed ID: 1569866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-brain intracranial vessel wall imaging at 3 Tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo.
    Fan Z; Yang Q; Deng Z; Li Y; Bi X; Song S; Li D
    Magn Reson Med; 2017 Mar; 77(3):1142-1150. PubMed ID: 26923198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual cisternoscopy of intracranial vessels: a novel visualization technique using virtual reality.
    Fellner F; Blank M; Fellner C; Böhm-Jurkovic H; Bautz W; Kalender WA
    Magn Reson Imaging; 1998 Nov; 16(9):1013-22. PubMed ID: 9839985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The detailed imaging of vessels in MR angiography via projections from irregularly restricted data sets].
    Klose U; Petersen D
    Rofo; 1992 May; 156(5):482-6. PubMed ID: 1596554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibility-weighted imaging for differential diagnosis of cerebral vascular pathology: a pictorial review.
    Tsui YK; Tsai FY; Hasso AN; Greensite F; Nguyen BV
    J Neurol Sci; 2009 Dec; 287(1-2):7-16. PubMed ID: 19772973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of post-procedure changes in aneurysmal lumen following detachable coil-placement using multi-planar reconstruction of high-field (3.0T) magnetic resonance angiography.
    Yoneoka Y; Watanabe M; Nishino K; Ito Y; Kwee IL; Nakada T; Fujii Y
    Acta Neurochir (Wien); 2008 Apr; 150(4):351-8; discussion 358. PubMed ID: 18297232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnosis of cerebrovascular disease in sickle cell anemia by magnetic resonance angiography.
    Wiznitzer M; Ruggieri PM; Masaryk TJ; Ross JS; Modic MT; Berman B
    J Pediatr; 1990 Oct; 117(4):551-5. PubMed ID: 2213377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.