These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 13932289)

  • 1. Gastrolith growth and calcium shifts in the freshwater crayfish, Orconectes virilis.
    MCWHINNIE MA
    Comp Biochem Physiol; 1962; 7():1-14. PubMed ID: 13932289
    [No Abstract]   [Full Text] [Related]  

  • 2. The deposition of skeletal structures in the crustacea. IV. Microradiographic studies of the gastrolith of the crayfish Orconectes virilis hagen.
    TRAVIS DF; FRIBERG U
    J Ultrastruct Res; 1963 Feb; 8():48-65. PubMed ID: 13994028
    [No Abstract]   [Full Text] [Related]  

  • 3. THE DEPOSITION OF SKELETAL STRUCTURES IN THE CRUSTACEA. 2. THE HISTOCHEMICAL CHANGES ASSOCIATED WITH THE DEVELOPMENT OF THE NONMINERALIZED SKELETAL COMPONENTS OF THE GASTROLITH DISCS OF THE CRAYFISH, ORCONECTES VIRILIS HAGEN.
    TRAVIS DF
    Acta Histochem; 1963 Jun; 15():251-68. PubMed ID: 14045927
    [No Abstract]   [Full Text] [Related]  

  • 4. THE DEPOSITION OF SKELETAL STRUCTURES IN THE CRUSTACEA. 3. THE HISTOCHEMICAL CHANGES ASSOCIATED WITH THE DEVELOPMENT OF THE MINERALIZED GASTROLITHS IN THE CRAYFISH, ORCONECTES VIRILIS HAGEN.
    TRAVIS DF
    Acta Histochem; 1963 Jun; 15():269-84. PubMed ID: 14045928
    [No Abstract]   [Full Text] [Related]  

  • 5. DETERMINATION OF GASTROLITH DEVELOPMENT IN CRAYFISH. HW-80500.
    DEAN JM
    HW SA US At Energy Comm; 1964 Jan; 18():173-6. PubMed ID: 24547224
    [No Abstract]   [Full Text] [Related]  

  • 6. THE DEPOSITION OF SKELETAL STRUCTURES IN THE CRUSTACEA. VI. MICRORADIOGRAPHIC STUDIES OF THE EXOSKELETON OF THE CRAYFISH ORCONECTES VIRILIS HAGEN.
    TRAVIS DF; FRIBERG U
    J Ultrastruct Res; 1963 Oct; 59():285-301. PubMed ID: 14072880
    [No Abstract]   [Full Text] [Related]  

  • 7. ISOLATION OF THE PROTEOLYTIC DIGESTIVE ENZYMES FROM THE GASTRIC JUICE OF THE CRAYFISH ORCONECTES VIRILIS (HAGEN).
    DEVILLEZ EJ
    Comp Biochem Physiol; 1965 Apr; 14():577-86. PubMed ID: 14327572
    [No Abstract]   [Full Text] [Related]  

  • 8. The non-protein nitrogenous constituents of the tissues of the freshwater crayfish Astacus pallipes Lereboullet.
    COWEY CB
    Comp Biochem Physiol; 1961 Mar; 2():173-80. PubMed ID: 13696103
    [No Abstract]   [Full Text] [Related]  

  • 9. High-resolution structural and elemental analyses of calcium storage structures synthesized by the noble crayfish Astacus astacus.
    Luquet G; Salomé M; Ziegler A; Paris C; Percot A; Dauphin Y
    J Struct Biol; 2016 Nov; 196(2):206-222. PubMed ID: 27612582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological insights into the rapid tissue regeneration of freshwater crayfish and crustaceans.
    Feleke M; Bennett S; Chen J; Chandler D; Hu X; Xu J
    Cell Biochem Funct; 2021 Aug; 39(6):740-753. PubMed ID: 34165197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The monophyletic origin of freshwater crayfish estimated from nuclear and mitochondrial DNA sequences.
    Crandall KA; Harris DJ; Fetzner JW
    Proc Biol Sci; 2000 Aug; 267(1453):1679-86. PubMed ID: 11467432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecdysteroid binding sites in gastrolith forming tissue and stomach during the molting cycle of crayfish Procambarus clarkii.
    Ueno M; Bidmon HJ; Stumpf WE
    Histochemistry; 1992 Aug; 98(1):1-6. PubMed ID: 1429012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith.
    Glazer L; Tom M; Weil S; Roth Z; Khalaila I; Mittelman B; Sagi A
    J Exp Biol; 2013 May; 216(Pt 10):1898-904. PubMed ID: 23393281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CAROTENOIDS OF CAVERNICOLOUS CRAYFISH.
    WOLFE DG; CORNWELL DG
    Science; 1964 Jun; 144(3625):1467-9. PubMed ID: 14171543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on Ca45 transport in crayfish nerve.
    SOLOWAY S; WELSH JH; SOLOMON AK
    J Cell Comp Physiol; 1953 Dec; 42(3):471-85. PubMed ID: 13117939
    [No Abstract]   [Full Text] [Related]  

  • 16. Calcium transport mechanism in crayfish gastrolith epithelium correlated with the molting cycle. II. Cytochemical demonstration of Ca2+-ATPase and Mg2+-ATPase.
    Ueno M; Mizuhira V
    Histochemistry; 1984; 80(3):213-7. PubMed ID: 6144645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of omnivorous crayfish in littoral communities.
    Dorn NJ; Wojdak JM
    Oecologia; 2004 Jun; 140(1):150-9. PubMed ID: 15064944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of stored glycogen during long-term temperature acclimation in the freshwater crayfish, Orconectes virilis.
    Jungreis AM
    Comp Biochem Physiol; 1968 Jan; 24(1):1-6. PubMed ID: 5645508
    [No Abstract]   [Full Text] [Related]  

  • 19. Cytochemical observations of hemolymph cells during coagulation in the crayfish, Orconectes virilis.
    Wood PJ; Podlewski J; Shenk TE
    J Morphol; 1971 Aug; 134(4):479-87. PubMed ID: 4106056
    [No Abstract]   [Full Text] [Related]  

  • 20. The complete mitogenome of the red claw crayfish Cherax quadricarinatus (Von Martens, 1868) (Crustacea: Decapoda: Parastacidae).
    Gan HM; Tan MH; Austin CM
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(1):385-6. PubMed ID: 24617485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.