These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1393546)

  • 21. The orbitofrontal cortex projects to the parvafox nucleus of the ventrolateral hypothalamus and to its targets in the ventromedial periaqueductal grey matter.
    Babalian A; Eichenberger S; Bilella A; Girard F; Szabolcsi V; Roccaro D; Alvarez-Bolado G; Xu C; Celio MR
    Brain Struct Funct; 2019 Jan; 224(1):293-314. PubMed ID: 30315416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys.
    An X; Bandler R; Ongür D; Price JL
    J Comp Neurol; 1998 Nov; 401(4):455-79. PubMed ID: 9826273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hypoxia sensitive neurons in the caudal hypothalamus project to the periaqueductal gray.
    Ryan JW; Waldrop TG
    Respir Physiol; 1995 Jun; 100(3):185-94. PubMed ID: 7481107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of messenger RNAs encoding enkephalin, substance P, somatostatin, galanin, vasoactive intestinal polypeptide, neuropeptide Y, and calcitonin gene-related peptide in the midbrain periaqueductal grey in the rat.
    Smith GS; Savery D; Marden C; López Costa JJ; Averill S; Priestley JV; Rattray M
    J Comp Neurol; 1994 Dec; 350(1):23-40. PubMed ID: 7860799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of midbrain stimulations on thermoregulatory vasomotor responses in rats.
    Zhang YH; Hosono T; Yanase-Fujiwara M; Chen XM; Kanosue K
    J Physiol; 1997 Aug; 503 ( Pt 1)(Pt 1):177-86. PubMed ID: 9288685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orbitomedial prefrontal cortical projections to hypothalamus in the rat.
    Floyd NS; Price JL; Ferry AT; Keay KA; Bandler R
    J Comp Neurol; 2001 Apr; 432(3):307-28. PubMed ID: 11246210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First evidence of neuronal connections between specific parts of the periaqueductal gray (PAG) and the rest of the brain in sheep: placing the sheep PAG in the circuit of emotion.
    Menant O; Prima MC; Morisse M; Cornilleau F; Moussu C; Gautier A; Blanchon H; Meurisse M; Delagrange P; Tillet Y; Chaillou E
    Brain Struct Funct; 2018 Sep; 223(7):3297-3316. PubMed ID: 29869133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential origin of brainstem serotoninergic projections to the midbrain periaqueductal gray and superior colliculus of the rat.
    Beitz AJ; Clements JR; Mullett MA; Ecklund LJ
    J Comp Neurol; 1986 Aug; 250(4):498-509. PubMed ID: 3760251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurones in the dorsolateral periaqueductal grey matter in coronal slices of rat midbrain: electrophysiological and morphological characteristics.
    Lovick TA; Stezhka VV
    Exp Brain Res; 1999 Jan; 124(1):53-8. PubMed ID: 9928789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fos activation in hypothalamic neurons during cold or warm exposure: projections to periaqueductal gray matter.
    Yoshida K; Konishi M; Nagashima K; Saper CB; Kanosue K
    Neuroscience; 2005; 133(4):1039-46. PubMed ID: 15927405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Viscerotopic organization of neurons subserving hypotensive reactions within the midbrain periaqueductal grey: a correlative functional and anatomical study.
    Carrive P; Bandler R
    Brain Res; 1991 Feb; 541(2):206-15. PubMed ID: 2054638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cardiovascular effects and changes in midbrain periaqueductal gray neuronal activity induced by electrical stimulation of the hypothalamus in the rat.
    van der Plas J; Wiersinga-Post JE; Maes FW; Bohus B
    Brain Res Bull; 1995; 37(6):645-56. PubMed ID: 7670891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: a PHA-L study in the rat.
    Bernard JF; Dallel R; Raboisson P; Villanueva L; Le Bars D
    J Comp Neurol; 1995 Mar; 353(4):480-505. PubMed ID: 7759612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray.
    Vanderhorst VG; Mouton LJ; Blok BF; Holstege G
    J Comp Neurol; 1996 Dec; 376(3):361-85. PubMed ID: 8956105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ventrolateral upper cervical cell group in cat projects to all rostrocaudal levels of the periaqueductal gray matter.
    Mouton LJ; Eggens-Meijer E; Klop EM
    Brain Res; 2009 Dec; 1300():79-96. PubMed ID: 19747465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co-localization of GABA with nicotinamide adenine dinucleotide phosphate-dependent diaphorase in neurones in the dorsolateral periaqueductal grey matter of the rat.
    Lovick TA; Paul NL
    Neurosci Lett; 1999 Sep; 272(3):167-70. PubMed ID: 10505607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Projections from the periaqueductal gray to the rostromedial pericoerulear region and nucleus locus coeruleus: anatomic and physiologic studies.
    Ennis M; Behbehani M; Shipley MT; Van Bockstaele EJ; Aston-Jones G
    J Comp Neurol; 1991 Apr; 306(3):480-94. PubMed ID: 1713927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Origins of endomorphin-immunoreactive fibers and terminals in different columns of the periaqueductal gray in the rat.
    Chen T; Hui R; Wang XL; Zhang T; Dong YX; Li YQ
    J Comp Neurol; 2008 Jul; 509(1):72-87. PubMed ID: 18421704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Descending control of the respiratory neuronal network by the midbrain periaqueductal grey in the rat in vivo.
    Subramanian HH
    J Physiol; 2013 Jan; 591(1):109-22. PubMed ID: 23129795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitric oxide synthase and interferon-gamma receptor immunoreactivities in relation to ascending spinal pathways to thalamus, hypothalamus, and the periaqueductal grey in the rat.
    Kayalioglu G; Robertson B; Kristensson K; Grant G
    Somatosens Mot Res; 1999; 16(4):280-90. PubMed ID: 10632025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.