These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 1393558)

  • 1. Phase-resetting effect of 8-OH-DPAT, a serotonin1A receptor agonist, on the circadian rhythm of firing rate in the rat suprachiasmatic nuclei in vitro.
    Shibata S; Tsuneyoshi A; Hamada T; Tominaga K; Watanabe S
    Brain Res; 1992 Jun; 582(2):353-6. PubMed ID: 1393558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serotonin and the mammalian circadian system: I. In vitro phase shifts by serotonergic agonists and antagonists.
    Prosser RA; Dean RR; Edgar DM; Heller HC; Miller JD
    J Biol Rhythms; 1993; 8(1):1-16. PubMed ID: 8490207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo resetting of the hamster circadian clock by 5-HT7 receptors in the suprachiasmatic nucleus.
    Ehlen JC; Grossman GH; Glass JD
    J Neurosci; 2001 Jul; 21(14):5351-7. PubMed ID: 11438611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serotonergic pre-treatments block in vitro serotonergic phase shifts of the mouse suprachiasmatic nucleus circadian clock.
    Prosser RA; Lee HM; Wehner A
    Neuroscience; 2006 Oct; 142(2):547-55. PubMed ID: 16876330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonin regulates the phase of the rat suprachiasmatic circadian pacemaker in vitro only during the subjective day.
    Medanic M; Gillette MU
    J Physiol; 1992 May; 450():629-42. PubMed ID: 1432721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of the mouse circadian system to serotonin 1A/2/7 agonists in vivo: surprisingly little.
    Antle MC; Ogilvie MD; Pickard GE; Mistlberger RE
    J Biol Rhythms; 2003 Apr; 18(2):145-58. PubMed ID: 12693869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 8-OH-DPAT as a 5-HT7 agonist: phase shifts of the circadian biological clock through increases in cAMP production.
    Sprouse J; Reynolds L; Li X; Braselton J; Schmidt A
    Neuropharmacology; 2004 Jan; 46(1):52-62. PubMed ID: 14654097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus.
    Duncan MJ; Franklin KM; Davis VA; Grossman GH; Knoch ME; Glass JD
    Eur J Neurosci; 2005 Nov; 22(9):2306-14. PubMed ID: 16262668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A serotonin agonist phase-shifts the circadian clock in the suprachiasmatic nuclei in vitro.
    Prosser RA; Miller JD; Heller HC
    Brain Res; 1990 Nov; 534(1-2):336-9. PubMed ID: 2073598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serotonin-induced phase advances of SCN neuronal firing in vitro: a possible role for 5-HT5A receptors?
    Sprouse J; Reynolds L; Braselton J; Schmidt A
    Synapse; 2004 Nov; 54(2):111-8. PubMed ID: 15352136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of suprachiasmatic nuclei and intergeniculate leaflets in mediating the phase-shifting effects of a serotonergic agonist and their photic modulation during subjective day.
    Challet E; Scarbrough K; Penev PD; Turek FW
    J Biol Rhythms; 1998 Oct; 13(5):410-21. PubMed ID: 9783232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian rhythm phenotype of 5-HT7 receptor knockout mice: 5-HT and 8-OH-DPAT-induced phase advances of SCN neuronal firing.
    Sprouse J; Li X; Stock J; McNeish J; Reynolds L
    J Biol Rhythms; 2005 Apr; 20(2):122-31. PubMed ID: 15834109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serotonergic stimulation and nonphotic phase-shifting in hamsters.
    Bobrzynska KJ; Godfrey MH; Mrosovsky N
    Physiol Behav; 1996 Feb; 59(2):221-30. PubMed ID: 8838598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serotonergic serotonin (1A) mixed agonists/antagonists elicit large-magnitude phase shifts in hamster circadian wheel-running rhythms.
    Gannon RL
    Neuroscience; 2003; 119(2):567-76. PubMed ID: 12770569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MDMA alters the response of the circadian clock to a photic and non-photic stimulus.
    Colbron S; Jones M; Biello SM
    Brain Res; 2002 Nov; 956(1):45-52. PubMed ID: 12426045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serotonin phase-shifts the mouse suprachiasmatic circadian clock in vitro.
    Prosser RA
    Brain Res; 2003 Mar; 966(1):110-5. PubMed ID: 12646314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the effects of aging on 5-HT7 and 5-HT1A receptors in discrete regions of the circadian timing system in hamsters.
    Duncan MJ; Short J; Wheeler DL
    Brain Res; 1999 May; 829(1-2):39-45. PubMed ID: 10350528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cocaine modulates mammalian circadian clock timing by decreasing serotonin transport in the SCN.
    Prosser RA; Stowie A; Amicarelli M; Nackenoff AG; Blakely RD; Glass JD
    Neuroscience; 2014 Sep; 275():184-93. PubMed ID: 24950119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melatonin inhibits in vitro serotonergic phase shifts of the suprachiasmatic circadian clock.
    Prosser RA
    Brain Res; 1999 Feb; 818(2):408-13. PubMed ID: 10082826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serotonergic regulation of circadian rhythms in Syrian hamsters.
    Mintz EM; Gillespie CF; Marvel CL; Huhman KL; Albers HE
    Neuroscience; 1997 Jul; 79(2):563-9. PubMed ID: 9200739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.