These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 13936678)

  • 1. Microelectrode recordings from the diencephalon of the frog (Rana pipiens) and a blue-sensitive system.
    MUNTZ WR
    J Neurophysiol; 1962 Nov; 25():699-711. PubMed ID: 13936678
    [No Abstract]   [Full Text] [Related]  

  • 2. Color opponent slow potential interactions in the frontal organ of the frog: Rana pipiens.
    Donley CS
    Vision Res; 1975 Feb; 15(2):245-51. PubMed ID: 1079383
    [No Abstract]   [Full Text] [Related]  

  • 3. The outer horizontal cell of the frog retina: morphology, receptor input, and function.
    Ogden TE; Mascetti GG; Pierantoni R
    Invest Ophthalmol Vis Sci; 1985 May; 26(5):643-56. PubMed ID: 2987150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stereotaxic atlas for diencephalic nuclei of the frog, Rana pipiens.
    Wada M; Urano A; Gorbman A
    Arch Histol Jpn; 1980 May; 43(2):157-73. PubMed ID: 6998405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Barium and K+ on surface and tubular cell resistances of frog stomach with microelectrodes.
    O'Callaghan J; Sanders SS; Shoemaker RL; Rehm WS
    Am J Physiol; 1974 Aug; 227(2):273-88. PubMed ID: 4546735
    [No Abstract]   [Full Text] [Related]  

  • 6. Some connections of the telencephalon of the frog, Rana pipiens. An experimental study.
    Halpern M
    Brain Behav Evol; 1972; 6(1):42-68. PubMed ID: 4126140
    [No Abstract]   [Full Text] [Related]  

  • 7. Representation of the visual field in the anterior thalamus of the leopard frog, Rana pipiens.
    Skorina LK; Recktenwald EW; Dudkin EA; Saidel WM; Gruberg ER
    Neurosci Lett; 2016 May; 621():34-38. PubMed ID: 27064110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The physical state of potassium in frog skeletal muscle studied by ion-sensitive microelectrodes and by electron microscopy: interpretation of seemingly incompatible results.
    Edelmann L
    Scanning Microsc; 1989 Dec; 3(4):1219-30. PubMed ID: 2633339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An effective method for the intracellular recording of repetitive action potential trains lasting several seconds in frog toe muscle fibers.
    Oz M; Frank GB
    Methods Find Exp Clin Pharmacol; 1994; 16(1):5-8. PubMed ID: 8164473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microelectrode study of intracellular pH in frog skin: dependence on serosal chloride.
    Duffey ME; Kelepouris E; Peterson-Yantorno K; Civan MM
    Am J Physiol; 1986 Sep; 251(3 Pt 2):F468-74. PubMed ID: 3489414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microelectrode study of accessory optic tract in the rabbit.
    HAMASAKI D; MARG E
    Am J Physiol; 1962 Mar; 202():480-6. PubMed ID: 13904055
    [No Abstract]   [Full Text] [Related]  

  • 12. The potential binocular field and its tectal representation in Rana pipiens.
    Grobstein P; Comer C; Kostyk S
    J Comp Neurol; 1980 Mar; 190(1):175-85. PubMed ID: 6966634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [TECHNIC FOR THE PREPARATION AND PRESERVATION OF GLASS MICROELECTRODE].
    JANISZEWSKI L
    Acta Physiol Pol; 1965; 16():159-64. PubMed ID: 14338601
    [No Abstract]   [Full Text] [Related]  

  • 14. [A NEW PRINCIPLE FOR CONSTRUCTING A PRELIMINARY AMPLIFIER FOR MICROELECTRODE LEADS].
    PIATIGORSKII BIa
    Biull Eksp Biol Med; 1964 Sep; 58():120-3. PubMed ID: 14273449
    [No Abstract]   [Full Text] [Related]  

  • 15. Trajectories of axons in ectopic VIIIth nerves.
    Constantine-Paton M
    Dev Biol; 1983 May; 97(1):239-44. PubMed ID: 6601595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the resistance of the intercalated disk in the ventricle of the frog Rana pipiens.
    Chapman RA; Fry CH
    J Physiol; 1975 Jan; 244(1):34P-35P. PubMed ID: 1079050
    [No Abstract]   [Full Text] [Related]  

  • 17. Junction potentials in the crystalline lens.
    Rae JL; Germer HA
    J Appl Physiol; 1974 Sep; 37(3):464-7. PubMed ID: 4547237
    [No Abstract]   [Full Text] [Related]  

  • 18. Wavelength discrimination in the leopard frog: a reexamination.
    Fite KV; Soukup J; Carey RG
    Brain Behav Evol; 1978; 15(5-6):405-14. PubMed ID: 310705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DEVELOPMENT AND FUNCTIONAL SIGNIFICANCE OF PREGENICULATE NUCLEUS IN MAN.
    PREOBRAZHENSKAYA NS
    Fed Proc Transl Suppl; 1964; 23():715-8. PubMed ID: 14196914
    [No Abstract]   [Full Text] [Related]  

  • 20. BEHAVIORAL EVIDENCE FOR COLOR DISCRIMINATION IN CAT.
    MELLO NK; PETERSON NJ
    J Neurophysiol; 1964 May; 27():323-33. PubMed ID: 14168196
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.