These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 13940139)

  • 1. Terminal oxidation in the regulation of heme biosynthesis.
    ONISAWA J; LABBE RF
    Science; 1963 Jun; 140(3573):1326-7. PubMed ID: 13940139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. THE EFFECTS OF ADENINE NUCLEOTIDES ON PYRUVATE METABOLISM IN RAT LIVER.
    BERRY MN
    Biochem J; 1965 Jun; 95(3):587-96. PubMed ID: 14342491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fumarate reductase in the control of heme biosynthesis.
    Kurumada T; Labbe RF
    Science; 1966 Mar; 151(3715):1228-9. PubMed ID: 4286342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-dependent control of the tricarboxylic acid cycle by fatty acid oxidation in rat liver mitochondria.
    Garland PB; Shepherd D; Nicholls DG; Ontko J
    Adv Enzyme Regul; 1968; 6():3-30. PubMed ID: 5720339
    [No Abstract]   [Full Text] [Related]  

  • 5. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate.
    Russell RR; Taegtmeyer H
    J Clin Invest; 1991 Feb; 87(2):384-90. PubMed ID: 1671390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propionyl-L-carnitine-mediated improvement in contractile function of rat hearts oxidizing acetoacetate.
    Russell RR; Mommessin JI; Taegtmeyer H
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H441-7. PubMed ID: 7840294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the formation of acetoacetate by direct deacylation of acetoacetyl-CoA in liver mitochondria.
    SEGAL HL; MENON GK
    Biochem Biophys Res Commun; 1960 Oct; 3():406-11. PubMed ID: 13749654
    [No Abstract]   [Full Text] [Related]  

  • 8. Regulation of palmitoylcarnitine oxidation in isolated rat liver mitochondria. Role of the redox state of NAD(H).
    Latipää PM; Kärki TT; Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1986 Feb; 875(2):293-300. PubMed ID: 3002483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ACTION OF VITAMIN A ON LIVER HOMOGENATE OXIDATION OF TRICARBOXYLIC ACID CYCLE INTERMEDIATES.
    Deluca HF; Manatt MR; Madsen N; Olson EB
    J Nutr; 1963 Dec; 81():383-6. PubMed ID: 14100999
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of clofibrate on the CoA thioester profile in rat liver.
    Ball MR; Gumaa KA; McLean P
    Biochem Biophys Res Commun; 1979 Mar; 87(2):489-96. PubMed ID: 444235
    [No Abstract]   [Full Text] [Related]  

  • 11. Evaluation of ischemic damage to rat liver mitochondria using the Krebs-cycle.
    Daniel AM; Beaudoin JG
    J Surg Res; 1974 Sep; 17(3):204-9. PubMed ID: 4413310
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of acetate and octanoate on tricarboxylic acid cycle metabolite disposal during propionate oxidation in the perfused rat heart.
    Sundqvist KE; Peuhkurinen KJ; Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1984 Oct; 801(3):429-36. PubMed ID: 6487652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetoacetate and malate effects on succinate and energy production by O2-deprived liver mitochondria supplied with 2-oxoglutarate.
    Guidoux R
    Arch Biochem Biophys; 1991 Jun; 287(2):397-402. PubMed ID: 1898011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of glutamate and aspartate on myocardial substrate oxidation during potassium arrest.
    Reed MK; Barak C; Malloy CR; Maniscalco SP; Jessen ME
    J Thorac Cardiovasc Surg; 1996 Dec; 112(6):1651-60. PubMed ID: 8975857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes.
    McCammon MT; Epstein CB; Przybyla-Zawislak B; McAlister-Henn L; Butow RA
    Mol Biol Cell; 2003 Mar; 14(3):958-72. PubMed ID: 12631716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid oxidation and ketogenesis by astrocytes in primary culture.
    Auestad N; Korsak RA; Morrow JW; Edmond J
    J Neurochem; 1991 Apr; 56(4):1376-86. PubMed ID: 2002348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Studies on the regulation of carbohydrate metabolism in vivo. 3. Influence of the inhibition of fatty acid oxidation].
    Nordmann R; Nordmann J
    Biochimie; 1971; 53(5):705-8. PubMed ID: 4330859
    [No Abstract]   [Full Text] [Related]  

  • 18. Acetoacetate metabolism in infant and adult rat brain in vitro.
    Ito T; Quastel JH
    Biochem J; 1970 Feb; 116(4):641-55. PubMed ID: 5435493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological roles of animal succinate thiokinases. Specific association of the guanine nucleotide-linked enzyme with haem biosynthesis.
    Jenkins TM; Weitzman PD
    FEBS Lett; 1988 Mar; 230(1-2):6-8. PubMed ID: 3350152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Symposium on clinical aspects on porphyrias. (4). The role of citric acid cycle turnover in the control of heme biosynthesis].
    Onisawa J
    Nihon Naika Gakkai Zasshi; 1967 Sep; 56(9):965-9. PubMed ID: 5627157
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.