BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1394669)

  • 1. The mutagenic constituents of Rubia tinctorum.
    Kawasaki Y; Goda Y; Yoshihira K
    Chem Pharm Bull (Tokyo); 1992 Jun; 40(6):1504-9. PubMed ID: 1394669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a mutagenic substance, in Rubia tinctorum L. (madder) root, as lucidin.
    Yasui Y; Takeda N
    Mutat Res; 1983 Sep; 121(3-4):185-90. PubMed ID: 6621581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and extraction of lucidin primeveroside from Rubia tinctorum L. and crystal structure elucidation.
    Henderson RL; Rayner CM; Blackburn RS
    Phytochemistry; 2013 Nov; 95():105-8. PubMed ID: 23891215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mutagenic potential of madder root in dyeing processes in the textile industry.
    Jäger I; Hafner C; Welsch C; Schneider K; Iznaguen H; Westendorf J
    Mutat Res; 2006 Jun; 605(1-2):22-9. PubMed ID: 16678474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genotoxicity of lucidin, a natural component of Rubia tinctorum L., and lucidinethylether, a component of ethanolic Rubia extracts.
    Westendorf J; Poginsky B; Marquardt H; Groth G; Marquardt H
    Cell Biol Toxicol; 1988 Jun; 4(2):225-39. PubMed ID: 3069188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mild extraction methods using aqueous glucose solution for the analysis of natural dyes in textile artefacts dyed with Dyer's madder (Rubia tinctorum L.).
    Ford L; Henderson RL; Rayner CM; Blackburn RS
    J Chromatogr A; 2017 Mar; 1487():36-46. PubMed ID: 28131591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenicity of natural anthraquinones from Rubia tinctorum in the Drosophila wing spot test.
    Marec F; Kollárová I; Jegorov A
    Planta Med; 2001 Mar; 67(2):127-31. PubMed ID: 11301857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of genotoxic metabolites from anthraquinone glycosides, present in Rubia tinctorum L.
    Blömeke B; Poginsky B; Schmutte C; Marquardt H; Westendorf J
    Mutat Res; 1992 Feb; 265(2):263-72. PubMed ID: 1370725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Studies on coloring constituents in commercial madder color].
    Kawasaki Y; Goda Y; Sato K; Toshihira K
    Eisei Shikenjo Hokoku; 1989; (107):103-5. PubMed ID: 2636908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carcinogenic potential of alizarin and rubiadin, components of madder color, in a rat medium-term multi-organ bioassay.
    Inoue K; Yoshida M; Takahashi M; Fujimoto H; Shibutani M; Hirose M; Nishikawa A
    Cancer Sci; 2009 Dec; 100(12):2261-7. PubMed ID: 19793347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and extraction of ruberythric acid from Rubia tinctorum L. and crystal structure elucidation.
    Ford L; Rayner CM; Blackburn RS
    Phytochemistry; 2015 Sep; 117():168-173. PubMed ID: 26091962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenicity of anthraquinones in the Salmonella preincubation test.
    Tikkanen L; Matsushima T; Natori S
    Mutat Res; 1983 Mar; 116(3-4):297-304. PubMed ID: 6339896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multivariate study of the performance of an ultrasound-assisted madder dyes extraction and characterization by liquid chromatography-photodiode array detection.
    Cuoco G; Mathe C; Archier P; Chemat F; Vieillescazes C
    Ultrason Sonochem; 2009 Jan; 16(1):75-82. PubMed ID: 18617432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two validated HPLC methods for the quantification of alizarin and other anthraquinones in Rubia tinctorum cultivars.
    Derksen GC; Lelyveld GP; van Beek TA; Capelle A; de Groot AE
    Phytochem Anal; 2004; 15(6):397-406. PubMed ID: 15599964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Salmonella typhimurium as a test system for detecting the mutagenic activity of environmental pollutants].
    Dugan AM
    Tsitol Genet; 1994; 28(3):37-41. PubMed ID: 7974781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of lucidin formation in Rubia tinctorum L.
    Nakanishi F; Nagasawa Y; Kabaya Y; Sekimoto H; Shimomura K
    Plant Physiol Biochem; 2005; 43(10-11):921-8. PubMed ID: 16310368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico screening of anthraquinones from Prismatomeris memecyloides as novel phosphodiesterase type-5 inhibitors (PDE-5Is).
    Khanh PN; Huong TT; Spiga O; Trezza A; Son NT; Cuong TD; Ha VT; Cuong NM
    Rev Int Androl; 2018; 16(4):147-158. PubMed ID: 30286869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of adducts formed by reaction of purine bases with a mutagenic anthraquinone, lucidin: mechanism of mutagenicity by anthraquinones occurring in rubiaceae plants.
    Kawasaki Y; Goda Y; Noguchi H; Yamada T
    Chem Pharm Bull (Tokyo); 1994 Sep; 42(9):1971-3. PubMed ID: 7954947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of the distribution of anthraquinone components from madder roots in rat kidneys by desorption electrospray ionization-time-of-flight mass spectrometry imaging.
    Ishii Y; Nakamura K; Mitsumoto T; Takimoto N; Namiki M; Takasu S; Ogawa K
    Food Chem Toxicol; 2022 Mar; 161():112851. PubMed ID: 35139434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenicity of substituted anthraquinones in the Ames/Salmonella microsome system.
    Krivobok S; Seigle-Murandi F; Steiman R; Marzin DR; Betina V
    Mutat Res; 1992 May; 279(1):1-8. PubMed ID: 1374527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.